Super Bright Fireball Spotted Across U.S. Northeast

Bright meteor captured on a webcam in Portsmouth, New Hampshire on May 17, 2016. Via www.portsmouthwebcam.com

It came from outer space—literally! On Tuesday, May 17, 2016, the early morning sky briefly lit up with the brilliant flash of a fireball—that is, an extremely bright meteor—over much of eastern New England states and even parts of southeastern Canada.

The event, which occurred around 12:50 a.m. EDT (04:50 UTC), was reported by witnesses from Maine, New Hampshire, Massachusetts, Rhode Island, Connecticut, New York, Ontario, and Québec, and captured on several automated cameras like a webcam in Portsmouth, NH (seen above) and a police dashcam in Plattsburgh, NY (below).

The fireball appeared to be moving from southwest to northeast and for some witnesses created an audible sonic boom, heard (and felt) several minutes later.

See more videos of this event from local news stations WMTW and WGME (Maine) and WMUR (New Hampshire) and from the Ogunquit police department on Twitter.

Meteors are the result of debris in space rapidly entering Earth’s upper atmosphere, rapidly compressing the air and causing it to quickly release energy in the form of heat and optical light. If the entering object is massive enough it may violently disintegrate during its fall, releasing both light and sound. This particular meteor technically classifies as a bolide, due to its brightness, eruption, and visible fragmentation. Learn more about the various types of meteors here.

No reports of a meteorite impact at ground level have been made although I must assume there will be individuals who go on the hunt—meteorite fragments, especially those associated with witnessed events, can be quite valuable.

Did you witness the event or capture it on camera? Report your sighting of this or any other fireballs on the AMS site and be sure to send your fireball videos or images to the American Meteor Society here.

Source: American Meteor Society

The post Super Bright Fireball Spotted Across U.S. Northeast appeared first on Universe Today.

Enceladus’ Jets Selectively Power-Up Farther From Saturn

Icy water vapor geysers erupting from fissures on Enceladus. Credit: NASA/JPL

A crowning achievement of the Cassini mission to Saturn is the discovery of water vapor jets spraying out from Enceladus‘ southern pole. First witnessed by the spacecraft in 2005, these icy geysers propelled the little 515-kilometer-wide moon into the scientific spotlight and literally rewrote the mission’s objectives. After 22 flybys of Enceladus during its nearly twelve years in orbit around Saturn, Cassini has gathered enough data to determine that there is a global subsurface ocean of salty liquid water beneath Enceladus’ frozen crust—an ocean that gets sprayed into space from long “tiger stripe” fissures running across the moon’s southern pole.  Now, new research has shown that at least some of the vapor jets get a boost in activity when Enceladus is farther from Saturn.

By measuring the changes in brightness of a distant background star as Enceladus’ plumes passed in front of it in March 2016, Cassini observed a significant increase in the amount of icy particles being ejected by one particular jet source.

Named “Baghdad 1,” the jet went from contributing 2% of the total vapor content of the entire plume area to 8% when Enceladus was at the farthest point in its slightly-eccentric orbit around Saturn. This small yet significant discovery indicates that, although Enceladus’ plumes are reacting to morphological changes to the moon’s crust due to tidal flexing, it’s select small-scale jets that are exhibiting the most variation in output (rather than a simple, general increase in outgassing across the full plumes.)

“How do the tiger stripe fissures respond to the push and pull of tidal forces as Enceladus goes around its orbit to explain this difference? We now have new clues!” said Candice Hansen, senior scientist at the Planetary Science Institute and lead planner of the study. “It may be that the individual jet sources along the tiger stripes have a particular shape or width that responds most strongly to the tidal forcing each orbit to boost more ice grains at this orbital longitude.”

The confirmation that Enceladus shows an increase in overall plume output at farther points from Saturn was first made in 2013.

Whether this new finding means that the internal structure of the fissures is different than what scientists have suspected or some other process is at work either within Enceladus or in its orbit around Saturn still remains to be determined.

“Since we can only see what’s going on above the surface, at the end of the day, it’s up to the modelers to take this data and figure out what’s going on underground,” said Hansen.

Sources: Planetary Science Institute and NASA/JPL

The post Enceladus’ Jets Selectively Power-Up Farther From Saturn appeared first on Universe Today.

Three New Earth-sized Planets Found Just 40 Light-Years Away

Artist's impression of three newly-discovered exoplanets orbiting an ultracool dwarf star TRAPPIST-1. Credit: ESO/M. Kornmesser/N. Risinger (skysurvey.org).

Three more potentially Earthlike worlds have been discovered in our galactic backyard, announced online today by the European Southern Observatory. Researchers using the 60cm TRAPPIST telescope at ESO’s La Silla observatory in Chile have identified three Earth-sized exoplanets orbiting a star just 40 light-years away.

The star, originally classified as 2MASS J23062928-0502285 but now known as TRAPPIST-1, is an dim “ultracool” brown dwarf only .05% as bright as our Sun . Located in the constellation Aquarius, it’s now the 37th-farthest star known to host orbiting exoplanets.

The exoplanets were discovered via the transit method (TRAPPIST stands for Transiting Planets and Planetesimals Small Telescope) through which the light from a star is observed to dim slightly by planets passing in front of it from our point of view.

As a brown dwarf “failed star” TRAPPIST-1 is a very small and dim and isn’t easily visible from Earth, but it’s its very dimness that has allowed its planets to be discovered with existing technology. Their subtle silhouettes may have been lost in the glare of larger, brighter stars.

Follow-up measurements of the three exoplanets indicated that they are all approximately Earth-sized and have temperatures ranging from Earthlike to Venuslike (which is, admittedly, a fairly large range.) They orbit their host star very closely with periods measured in Earth days, not years.

“With such short orbital periods, the planets are between 20 and 100 times closer to their star than the Earth to the Sun,” said Michael Gillon, lead author of the research paper. “The structure of this planetary system is much more similar in scale to the system of Jupiter’s moons than to that of the Solar System.”

Read more: Mini Solar System Around a Brown Dwarf

Although these three new exoplanets are Earth-sized they do not yet classify as “potentially habitable,” at least by the standards of the Planetary Habitability Laboratory (PHL) operated by the University of Puerto Rico at Arecibo. The planets fall outside PHL’s required habitable zone; two are too close to the host star and one is too far away.

This does not mean that the exoplanets are completely uninhabitable, though; it’s entirely possible that there are regions on or within them where life could exist, not unlike Mars or some of the moons in our own Solar System.

Discovering three planets orbiting such a small yet extremely common type of star hints that there are likely many, many more such worlds in our galaxy and the Universe as a whole.

“So far, the existence of such ‘red worlds’ orbiting ultra-cool dwarf stars was purely theoretical, but now we have not just one lonely planet around such a faint red star but a complete system of three planets,” said study co-author Emmanuel Jehin.

The team’s research was presented in a paper entitled “Temperate Earth-sized planets transiting a nearby ultracool dwarf star” and will be published in Nature.

Source: ESO

The post Three New Earth-sized Planets Found Just 40 Light-Years Away appeared first on Universe Today.

Icy Hot: Europa’s Frozen Crust Could Be Warmer Than We Thought

Europa's cracked, icy surface imaged by NASA's Galileo spacecraft in 1998. Credit: NASA/JPL-Caltech/SETI Institute.

All the worlds may be ours except Europa but that only makes the ice-covered moon of Jupiter all the more intriguing. Beneath Europa’s thin crust of ice lies a tantalizing global ocean of liquid water somewhere in the neighborhood of 100 kilometers deep—which adds up to more liquid water than is on the entire surface of the Earth. Liquid water plus a heat source(s) to keep it liquid plus the organic compounds necessary for life and…well, you know where the thought process naturally goes from there.

And now it turns out Europa may have even more of a heat source than we thought. Yes, a big component of Europa’s water-liquefying warmth comes from tidal stresses enacted by the massive gravity of Jupiter as well as from the other large Galilean moons. But exactly how much heat is created within the moon’s icy crust as it flexes has so far only been loosely estimated. Now, researchers from Brown University in Providence, RI and Columbia University in New York City have modeled how friction creates heat within ice under stress, and the results were surprising.

Although 3,100-km-wide Europa is coated in ice and technically has the smoothest surface in the Solar System, it’s far from featureless. Its frozen crust features enormous regions of broken “chaos terrain”  and is covered in long, crisscrossing fractures filled with reddish-brown material (which may be a form of sea salt), as well as crumpled, mountain-like ridges that appear curiously fresh.

These ridges are thought to be a result of a form of tectonics, except not with plates of rock like on Earth but rather shifting slabs of frozen water. But where the energy needed to drive that process is coming from—and what happens to all the frictional heat created during it—isn’t well known.

“People have been using simple mechanical models to describe the ice,” said geophysicist Christine McCarthy, Lamont Assistant Research Professor at Columbia University who led the research while a graduate student at Brown University. “They weren’t getting the kinds of heat fluxes that would create these tectonics. So we ran some experiments to try to understand this process better.”

By mechanically subjecting ice samples to various forms of pressure and stress, similar to the conditions that would be found on Europa as it orbits Jupiter, the researchers found that most of the heat is generated within deformities in the ice, rather than between the individual grains as was previously thought. This difference means there’s likely a lot more heat moving through Europa’s ice layers, which would affect both its behavior and its thickness.

“Those physics are first order in understanding the thickness of Europa’s shell,” said Reid Cooper, Earth science professor and McCarthy’s research partner at Brown. “In turn, the thickness of the shell relative to the bulk chemistry of the moon is important in understanding the chemistry of that ocean. And if you’re looking for life, then the chemistry of the ocean is a big deal.”

When it comes to Europa’s icy crust there have traditionally been two camps of thought: the thin-icers and the thick-icers. Thin-icers estimate the moon’s crust to be at most only a few kilometers thick—possibly coming very close to the surface in places, if not breaking through entirely—while those in the thick-ice camp think it could be tens of times thicker. While there are data to support both hypotheses, it remains to be seen which these new findings will best support.

Luckily we won’t have to wait terribly long to find out how thick the moon’s icy crust really is. A recently-approved NASA mission will launch to Europa in the 2020s to explore its surface, interior composition, and potential habitability. The mission may (i.e., should) also include a lander, although of what fashion has yet to be determined. But when the data from that mission do finally come in, many of our long-standing questions about this mystifying icy world will finally be answered.

The team’s research is published in the June 1 issue of Earth and Planetary Science Letters.

Source: PhysOrg.com 

The post Icy Hot: Europa’s Frozen Crust Could Be Warmer Than We Thought appeared first on Universe Today.

Nearby Supernovas Showered Earth With Iron

Visible, infrared, and X-ray light image of Kepler's supernova remnant (SN 1604) located about 13,000 light-years away. Credit: NASA, ESA, R. Sankrit and W. Blair (Johns Hopkins University).

We all know that we are “made of star-stuff,” with all of the elements necessary for the formation of planets and even life itself having originated inside generations of massive stars, which over billions of years have blasted their creations out into the galaxy at the explosive ends of their lives. Supernovas are some of the most powerful and energetic events in the known Universe, and when a dying star finally explodes you wouldn’t want to be anywhere nearby—fresh elements are nice and all but the energy and radiation from a supernova would roast any planets within tens if not hundreds of light-years in all directions. Luckily for us we’re not in an unsafe range of any supernovas in the foreseeable future, but there was a time geologically not very long ago that these stellar explosions are thought to have occurred in nearby space… and scientists have recently found the “smoking gun” evidence at the bottom of the ocean.

Two independent teams of “deep-sea astronomers”—one led by Dieter Breitschwerdt from the Berlin Institute of Technology and the other by Anton Wallner from the Australian National University—have investigated sediment samples taken from the floors of the Pacific, Atlantic, and Indian oceans. The sediments were found to contain relatively high levels of iron-60, an isotope specifically created during a supernova.

Watch: How Quickly Does a Supernova Happen?

The teams found that the ages of the iron-60 concentrations centered around two time periods, 1.7 to 3.2 million years ago and 6.5 to 8.7 million years ago. Based on this and the fact that our Solar System currently resides within a peanut-shaped region virtually empty of interstellar gas known as the Local Bubble, the researchers are confident that this provides further evidence that supernovas exploded within a mere 330 light-years of Earth, sending their elemental fallout our way.

“This research essentially proves that certain events happened in the not-too-distant past,” said Adrian Melott, an astrophysicist and professor at the University of Kansas who was not directly involved with the research but published his take on the findings in a letter in Nature. (Source)

The researchers think that two supernova events in particular were responsible for nearly half of the iron-60 concentrations now observed. These are thought to have taken place among a a nearby group of stars known as the Scorpius–Centaurus Association, some 2.3 and 1.5 million years ago. At those same time frames Earth was entering a phase of repeated global glaciation, the end of the last of which led to the rise of modern human civilization.

While supernovas of those sizes and distances wouldn’t have been a direct danger to life here on Earth, could they have played a part in changing the climate?

Read more: Could a Faraway Supernova Threaten Earth?

“Our local research group is working on figuring out what the effects were likely to have been,” Melott said. “We really don’t know. The events weren’t close enough to cause a big mass extinction or severe effects, but not so far away that we can ignore them either. We’re trying to decide if we should expect to have seen any effects on the ground on the Earth.”

Regardless of the correlation, if any, between ice ages and supernovas, it’s important to learn how these events do affect Earth and realize that they may have played an important and perhaps overlooked role in the history of life on our planet.

“Over the past 500 million years there must have been supernovae very nearby with disastrous consequences,” said Melott. “There have been a lot of mass extinctions, but at this point we don’t have enough information to tease out the role of supernovae in them.”

You can find the teams’ papers in Nature here and here.

Sources: IOP PhysicsWorld and the University of Kansas

The post Nearby Supernovas Showered Earth With Iron appeared first on Universe Today.

Did the Sun Steal Planet Nine?

Artist's impression of Planet Nine. Credit: ESO/Tomruen/nagualdesign

One of the biggest new mysteries in our Solar System is the purported presence of a large and distant “Planet Nine,” traveling around the Sun in a twenty-thousand-year orbit far beyond Pluto. Although this far-flung world’s existence has yet to actually be confirmed (or even detected) some scientists are suggesting it might have originally been an exoplanet around a neighboring star, pilfered by our Sun during its impudent adolescence.

In January 2016 the remorseless “planet killer” Mike Brown — a Caltech professor and astronomer whose discovery of Eris in 2005 prompted the IAU’s reclassification of planets, thereby knocking Pluto from the official list — announced evidence for the existence of a “real” ninth planet orbiting the Sun four times farther than Pluto…and possibly even farther out than the Kuiper Belt is thought to extend. According to Brown and co-researcher Konstantin Batygin their Planet Nine may be almost as massive as Neptune, but they’re still on the hunt for it within the regions where they think it should be.

Formed five billion years ago in a cluster of other stars, our Sun once had hundreds if not thousands of stellar siblings (now long since dispersed through the nearby galaxy.) As the stars developed many likely had planets form around them, just as the Sun did, and with all the young star systems in such relatively close proximity it’s possible that some planets wound up ejected from their host star to be picked up — or possibly even outright stolen — by another.

Brown and Batygin’s Planet Nine could be one of these hypothesized adopted worlds. A team of researchers, led by Alexander Mustill at the Lund Observatory in Sweden, recently investigated the probability of this scenario, described in an April 4, 2016 article on New Scientist.

What the researchers found based on their models — which took into consideration the orbits of known KBOs and trans-Neptunian objects (TNOs) but not the effects of known planets — was that the Sun could very easily capture nearby exoplanets as well as clusters of smaller bodies (like “mini Oort clouds”) given that the objects are far enough from their host star and the relative velocities during the “pick-up” are low.

While the researchers admit that the chances of a heist scenario having actually taken place are quite small — anywhere from 0.1 to 2% — they’re not zero, and so should be considered a reasonable possibility.

“While the existence of Planet 9 remains unproven, we consider capture from one of the Sun’s young brethren a plausible route to explain such an object’s orbit.”
– A. Mustill et al., Is There An Exoplanet In The Solar System? (Source)

It’s previously been suggested that the Sun could have captured worlds from other stars in passing, such as comets and even the approximately 1,800-kilometer-wide KBO Sedna.

There’s also the possibility, note Mustill et al., that a world like Planet Nine could have ended up a member of our Solar System after being forcibly ejected from its own where it formed close to its star but within an orbit that wasn’t stable — especially considering the complexities of multi-body systems.

Of course Planet Nine, if it exists at all and if so, whatever it happens to get named, may also have formed from the same planetary disk as the other planets. But even if that’s the case there will be many questions that will then need to be answered.

Sources: New Scientist and arXiv.org

The post Did the Sun Steal Planet Nine? appeared first on Universe Today.

The Bright Spots on Ceres are Blinking

Bright reflective material in Ceres' Occator crater, imaged by NASA's Dawn spacecraft in Sept .2015. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA.

All right, maybe not blinking like a flashlight (or a beacon on the tippity-top of a communication tower—don’t even start that speculation up) but the now-famous “bright spots” on the dwarf planet Ceres have been observed to detectably increase and decrease in brightness, if ever-so-slightly.

And what’s particularly interesting is that these observations were made not by NASA’s Dawn spacecraft, currently in orbit around Ceres, but from a telescope right here on Earth.

Researchers using the High Accuracy Radial velocity Planet Searcher (HARPS) instrument on ESO’s 3.6-meter telescope at La Silla detected “unexpected” changes in the brightness of Ceres during observations in July and August of 2015. Variations in line with Ceres’ 9-hour rotational period—specifically a Doppler effect in spectral wavelength created by the motion of the bright spots toward or away from Earth—were expected, but other fluctuations in brightness were also detected.

“The result was a surprise,”said Antonino Lanza from the INAF–Catania Astrophysical Observatory, co-author of the study. “We did find the expected changes to the spectrum from the rotation of Ceres, but with considerable other variations from night to night.”

Watch a video below illustrating the rotation of Ceres and how reflected light from the bright spots within Occator crater are alternately blue- and red-shifted according to the motion relative to Earth.

First observed with Hubble in December 2003, Ceres’ curious bright spots were resolved by Dawn’s cameras to be a cluster of separate regions clustered inside the 60-mile (90-km) -wide Occator crater. Based on Dawn data they are composed of some type of highly-reflective materials like salt and ice, although the exact composition or method of formation isn’t yet known.

Since they are made of such volatile materials though, interaction with solar radiation is likely the cause of the observed daily brightening. As the deposits heat up during the course of the 4.5-hour Ceres daytime they may create hazes and plumes of reflective particles.

“It has been noted that the spots appear bright at dawn on Ceres while they seem to fade by dusk,” noted study lead author Paolo Molaro in the team’s paper. “That could mean that sunlight plays an important role, for instance by heating up ice just beneath the surface and causing it to blast off some kind of plume or other feature.”

Once day turns to night these hazes will re-freeze, depositing the particles back down to the surface—although never in exactly the same way. These slight differences in evaporation and condensation could explain the random variation in daily brightening observed with HARPS.

These findings have been published the journal Monthly Notices of the Royal Astronomical Society (full text on arXiv here.)

Source: ESO

The post The Bright Spots on Ceres are Blinking appeared first on Universe Today.

DSCOVR Captures EPIC Views of the March 2016 Eclipse

The Moon's shadow is cast across Indonesia in this view from the DSCOVR spacecraft, March 9, 2016. (Courtesy of the DSCOVR EPIC team.)

On March 8, 2016 (March 9 local time) the Moon briefly blocked the light from the Sun in what was the only total solar eclipse of the year. The event was visible across portions of southeast Asia, Indonesia, and Micronesia, and was observed by both skywatchers on the ground in person and those watching live online around the world. While to most the view was of a silhouetted Moon slowly carving away the disk of the Sun before totality revealed a shimmering corona, the view from space looking back at Earth showed the Moon’s dark shadow passing over islands, clouds, and sea.

The picture above was acquired by NASA’s EPIC (Earth Polychromatic Imaging Camera) instrument on board the DSCOVR spacecraft, operated by NOAA. It’s one of twelve images captured during the course of the eclipse from DSCOVR’s position at L1, 1.6 million km (nearly 1 million miles) away.

Read more: What Are Lagrange Points?

Launched Feb. 11, 2015, DSCOVR observes both Earth and incoming space weather from the Sun, providing up to an hour of early warning of solar storm activity. Its location gives it a view of a constantly-illuminated Earth, since DSCOVR is always positioned between it and the Sun.

Watch an animation of the Moon’s shadow traveling northeast across the Pacific here, and for more images of the March 2016 total eclipse (captured from the ground) check out this article by David Dickinson.

The next solar eclipse in 2016 will be on September 1, and will be a partial/annular eclipse visible from Africa and the Indian Ocean. The next total solar eclipse will occur on Aug. 21, 2017, during which the path of totality will cross the United States from coast to coast.

Source: NASA’s Earth Observatory

Note: The March 2016 eclipse was also captured by Japan’s Himawari-8 geostationary weather satellite; watch the sequence from that spacecraft below:

The post DSCOVR Captures EPIC Views of the March 2016 Eclipse appeared first on Universe Today.

Dark Stains on Mercury Reveal Its Ancient Crust

Expanded-color image of Mercury's 52-km Degas crater, showing an abundance of low-reflectance material (LRM).

Ever since the MESSENGER spacecraft entered orbit around Mercury in 2011, and indeed even since Mariner 10‘s flyby in 1974, peculiar “dark spots” observed on the planet’s surface have intrigued scientists as to their composition and origin. Now, thanks to high-resolution spectral data acquired by MESSENGER during the last few months of its mission, researchers have confirmed that Mercury’s dark spots contain a form of carbon called graphite, excavated from the planet’s original, ancient crust.

Commonly found within and around impact craters and volcanic vents, the dark spots on Mercury—also referred to as “low-reflectance material,” or LRM—were originally suspected to contain carbon delivered to the planet by comets.

Data from MESSENGER’s Gamma-Ray and Neutron Spectrometer (GRNS) and X-ray instruments confirmed the LRM to contain high amounts of graphitic carbon, but likely originating from within Mercury itself. It’s thought that Mercury was once covered by a crust composed of graphite, when much of the planet was still molten.

“Experiments and modeling show that as this magma ocean cooled and minerals began to crystallize, minerals that solidified would all sink with the exception of graphite, which would have been buoyant and would have accumulated as the original crust of Mercury,” said Rachel Klima, co-author of a recent study on LRM and a planetary geologist at the Johns Hopkins University Applied Physics Laboratory. “We think that LRM may contain remnants of this primordial crust. If so, we may be observing the remains of Mercury’s original, 4.6-billion-year-old surface.”

See more MESSENGER images of LRM on Mercury here.

Although similar in visible coloration and covered in craters, cracks, and mountains, any similarities between Mercury and other smaller worlds in our Solar System—including our Moon—end there. Mercury has a formation history all it own and is compositionally unique among the planets.

These data revealing such a relatively high concentration of graphite in Mercury’s crust only adds to those differences, and also tell us about the various elements that were present around the Sun when the planets were forming.

“The finding of abundant carbon on the surface suggests that we may be seeing remnants of Mercury’s original ancient crust mixed into the volcanic rocks and impact ejecta that form the surface we see today,” said Larry Nittler, research paper co-author and Deputy Principal Investigator of the MESSENGER mission. “This result is a testament to the phenomenal success of the MESSENGER mission and adds to a long list of ways the innermost planet differs from its planetary neighbors and provides additional clues to the origin and early evolution of the inner Solar System.”

On Earth graphite is used in industry to make bricks that line refractory furnaces and increase the carbon content of steel. It’s also widely used in fire retardants, batteries, and lubricants, and is mixed with clay in various amounts to create the “lead” in pencils (which, by the way, contain no actual lead.)

These findings have been published in the March 7, 2016 Advanced Online Publication of Nature Geoscience.

MESSENGER (MErcury Surface, Space ENvironment, GEochemistry, and Ranging) was a NASA-sponsored scientific investigation of the planet Mercury and the first space mission designed to orbit the planet closest to the Sun. The MESSENGER spacecraft launched on August 3, 2004, and entered orbit about Mercury on March 17, 2011 (March 18, 2011 UTC). On April 30, 2015, after four years in orbit MESSENGER‘s mission and operational life came to an end when it impacted the surface of Mercury in its northern polar region.

Source: Carnegie Science and JHUAPL

 

Image credits:  NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

The post Dark Stains on Mercury Reveal Its Ancient Crust appeared first on Universe Today.

If You’re Going to Fall Into a Black Hole, Make Sure It’s Rotating

In "Interstellar" Matthew McConaughey saves the day by traveling into a black hole. New research suggests this could be possible. (Image © Paramount Pictures/Warner Bros.)

It’s no secret that black holes are objects to be avoided, were you to plot yourself a trip across the galaxy. Get too close to one and you’d find your ship hopelessly caught sliding down a gravitational slippery slope toward an inky black event horizon, beyond which there’s no escape. The closer you got the more gravity would yank at your vessel, increasingly more on the end closest to the black hole than on the farther side until eventually the extreme tidal forces would shear both you and your ship apart. Whatever remained would continue to fall, accelerating and stretching into “spaghettified” strands of ship and crew toward—and across—the event horizon. It’d be the end of the cosmic road, with nothing left of you except perhaps some slowly-dissipating “information” leaking back out into the Universe over the course of millennia in the form of Hawking radiation. Nice knowin’ ya.

 

That is, of course, if you were foolish enough to approach a non-spinning black hole.* Were it to have a healthy rotation to it there’s a possibility, based on new research, that you and your ship could survive the trip intact.

 

A team of researchers from Georgia Gwinnett College, UMass Dartmouth, and the University of Maryland have designed new supercomputer models to study the exotic physics of quickly-rotating black holes, a.k.a. Kerr black holes, and what might be found in the mysterious realm beyond the event horizon. What they found was the dynamics of their rapid rotation create a scenario in which a hypothetical spacecraft and crew might avoid gravitational disintegration during approach.

 

“We developed a first-of-its-kind computer simulation of how physical fields evolve on the approach to the center of a rotating black hole,” said Dr. Lior Burko, associate professor of physics at Georgia Gwinnett College and lead researcher on the study. “It has often been assumed that objects approaching a black hole are crushed by the increasing gravity. However, we found that while gravitational forces increase and become infinite, they do so fast enough that their interaction allows physical objects to stay intact as they move toward the center of the black hole.”

 

Read more: 10 Amazing Facts About Black Holes

 

Because the environment around black holes is so intense (and physics inside them doesn’t play by the rules) creating accurate models requires the latest high-tech computing power.

 

“This has never been done before, although there has been lots of speculation for decades on what actually happens inside a black hole,” said Gaurav Khanna, Associate Physics Professor at UMass Dartmouth, whose Center for Scientific Computing & Visualization Research developed the precision computer modeling necessary for the project.

 

 

Like science fiction movies have imagined for decades—from Disney’s The Black Hole to Nolan’s Interstellar—it just might be possible to survive a trip into a black hole, if conditions are right (i.e., you probably still don’t want to find yourself anywhere near one of these.)

 

Of course, what happens once you’re inside is still anyone’s guess…

 

The team’s paper “Cauchy-horizon singularity inside perturbed Kerr black holes” was published in the Feb. 9, 2016 edition of Rapid Communication in Physical Review D. You can find the full text here. The research was supported by the National Science Foundation.

 

Sources: UMass Dartmouth and Georgia Gwinnett College

 

*A true non-rotating “Schwarzschild” black hole would not, due to angular momentum etc., be readily found in the real world, thus making this research on rotating black holes all the more essential.

The post If You’re Going to Fall Into a Black Hole, Make Sure It’s Rotating appeared first on Universe Today.