Colonizing the Inner Solar System

In this epic, 2-part episode, we team up with Isaac Arthur to imagine how humans will colonize the inner Solar System, becoming a true spacefaring civilization.

The post Colonizing the Inner Solar System appeared first on Universe Today.

Moonbase by 2022 For $10 Billion, Says NASA

Based on a series of articles that were recently made available to the public, NASA predicts it could build a base on the Moon by 2022, and for cheaper than expected. Credit: NASA

Returning to the Moon has been the fevered dream of many scientists and astronauts. Ever since the Apollo Program culminated with the first astronauts setting foot on the Moon on July 20th, 1969, we have been looking for ways to go back to the Moon… and to stay there. In that time, multiple proposals have been drafted and considered. But in every case, these plans failed, despite the brave words and bold pledges made.

However, in a workshop that took place in August of 2014, representatives from NASA met with Harvard geneticist George Church, Peter Diamandis from the X Prize Foundation and other parties invested in space exploration to discuss low-cost options for returning to the Moon. The papers, which were recently made available in a special issue of New Space, describe how a settlement could be built on the Moon by 2022, and for the comparatively low cost of $10 billion.

Put simply, there are many benefits to establishing a base on the Moon. In addition to providing refueling stations that would shave billions off of future space missions – especially to Mars, which are planned for the 2030s – they would provide unique opportunities for scientific research and the testing of new technologies. But plans to build one have consistently been hampered by two key assumptions.

The first is that funding is the largest hurdle to overcome, which is understandable given the past 50 years of space mission costs. To put it in perspective, the Apollo Program would cost taxpayers approximately $150 billion in today’s dollars. Meanwhile, NASA’s annual budget for 2015 was approximately $18 billion, while its 2016 is projected to reach $19.3 billion. In the days when space exploration is not a matter of national security, money is sure to be more scarce.

The second assumption is that a presidential mandate to “return to the Moon to stay” is all that is needed overcome this problem and make the necessary budgets available. But despite repeated attempts, no mandate for renewed lunar or space exploration has resolved the issue. In short, space exploration is hampered by conventional thinking that assumes massive budgets are needed and that administrations simply need to make them available.

In truth, a number of advances that have been made in recent years are allowing for missions that would cost significantly less. This, and how a lunar base could be a benefit to space exploration and humanity, were the topics of discussion at the 2014 workshop. As NASA astrobiologist Chris McKay – who edited the New Space journal series – told Universe Today via email, one of the key benefits of a cost-effective base on the Moon is that it will bring other missions into the realm of affordability.

“I am interested in a long term research base on Mars – not just a short term human landing,” he said. “Establishing a research base on the Moon shows that we know how to do that and can do it in a sustainable way. We have to get away from the current situation where costs are so high that a base on the Moon, a human mission to Mars, and a human mission to an asteroid are all mutually exclusive. If we can drive the costs down by 10x or more then we can do them all.”

Central to this are several key changes that have taken place over the past decade. These include the development of the space launch business, which has led to an overall reduction in the cost of individual launches. The emergence of the NewSpace industry – i.e. a general term for various private commercial aerospace ventures – is another, which has been taking recent advances in technology and finding applications for them in space.

According to McKay, these and other technological developments will help resolve the budget issue. “Beyond the launch costs, they key to driving down the costs for a base on the Moon is to make use of technologies for sustainability being developed on Earth. My favorite examples are 3D printing, electric-cars, autonomous robots, and recycling toilets (like the blue diversion toilet).”

Alexandra Hall, the former Senior Director of the X Prize Foundation and one of the series’ main authors, also expressed the importance of emerging technologies in making this lunar base functional. As she told Universe Today via email, these will have significant benefits here on Earth, especially in the coming decades where rises in population will coincide with diminishing resources.

“The advances in life support and closed loop living necessary for sustaining life for long periods on the Moon will undoubtedly provide positive spin offs that benefit both the environment and our ability to live with changing climate and diminishing resources,” she said. “If we can figure out how to build structures with what’s already on the Moon, we can use that technology to help us create infrastructure and shelter solutions out of in-situ materials on Earth. If we can use rock that’s right there, perhaps we can avoid shipping asphalt and bricks across the world!”

https://youtu.be/fjKGcVzqCjk

Another important aspect of making a lunar base cost-effective was the potential for international partnerships, as well as those between the private and public sectors. As Hall explained it:

“While there will be commercial markets for the eventual fruits of our lunar exploration endeavors, the initial markets are likely to be dominated by governments. The private sector is best able to respond in ways that provide cost effective and competitive solutions when governments specify and commit to long term exploration goals. I believe that a Google Lunar XPRIZE win will flush out other private and commercial partners for pursuing a permanent settlement on the Moon, that could eclipse the need for significant government participation. Once a small company demonstrates that it is actually possible to get to the Moon and be productive, that allows others to start to plan new business and endeavors.”

As for where this base will go and what it will do, that is described in the preface article, “Toward a Low-Cost Lunar Settlement“. In essence, the proposed lunar base would exist at one of the poles and would be modeled on the U.S. Antarctic Station at the South Pole. It would be operated by NASA or an international consortium and house a crew of about 10 people, a mix of staff and field scientists that would be rotated three times a year.

Activities on the base, which would be assisted by autonomous and remotely-operated robotic devices, would center on supporting field research, mainly by graduate students doing thesis work. Another key activity for the residents would be testing technologies and program precedents which could be put to use on Mars, where NASA hopes to be sending astronauts in the coming decades.

Several times over in the series, it is stressed that this can be done for the relatively low cost of $10 billion. This overall assessments is outlined in the paper titled “A Summary of the Economic Assessment and Systems Analysis of an Evolvable Lunar Architecture That Leverages Commercial Space Capabilities and Public–Private Partner“. As it concludes:

“Based on the experience of recent NASA program innovations, such as the COTS program, a human return to the Moon may not be as expensive as previously thought. The United States could lead a return of humans to the surface of the Moon within a period of 5–7 years from authority to proceed at an estimated total cost of about $10 billion (–30%) for two independent and competing commercial service providers, or about $5 billion for each provider, using partnership methods.”

Other issues discussed in the series are the location of the base and the nature of its life-support systems. In the article titled “Site Selection for Lunar Industrialization, Economic Development, and Settlement“, the case is made for a base located in either the northern or southern polar region. Written by Dennis Whigo, founder and CEO of Skycorp, the article identifies two potential sites for a lunar base, using input parameters developed in consultation with venture capitalists.

These include the issues of power availability, low-cost communications over wide areas, availability of possible water (or hydrogen-based molecules) and other resources, and surface mobility. According to these assessments, the northern polar region is a good location because of its ample access to solar power. The southern pole is also identified as a potential site (particularly in the Shackleton Crater) due to the presence of water ice.

Last, but certainly not least, the series explores the issue of economic opportunities that could have far-ranging benefits for people here on Earth. Foremost among these is the potential for creating space solar power (SSP), a concept which has been explored as a possible solution to humanity’s reliance on fossil fuels and the limits of Earth-based solar power.

Whereas Earth-based solar collectors are limited by meteorological phenomena (i.e. weather) and Earth’s diurnal cycle (night and day), solar collectors placed in orbit would be able to collect energy from the Sun around the clock. However, the issues of launch and wireless energy transmission costs make this option financially unattractive.

But as is laid out in “Lunar-Based Self-Replicating Solar Factory“, establishing a factory on the Moon could reduce costs by a factor of four. This factory could build solar power satellites out of lunar material, using a self-replicating system (SRS) able to construct replicas of itself, then deploy them into geostationary Earth orbit via a linear electromagnetic accelerator (aka. Mass Driver).

An overriding theme in the series is how a lunar base would present opportunities for cooperation, both between the private and public sectors and different nations. The ISS is repeatedly used an example, which has benefited greatly in the past decade from programs like NASA’s Commercial Orbital Transportation Services (COTS) – which has been very successful at acquiring cost-effective transportation service to the station.

It is therefore understandable why NASA and those companies that have benefited from COTS want to extend this model to the Moon – in what is often referred to as Lunar Commercial Orbital Transfer Services (LCOTS) program. Aside from establishing a human presence on the Moon, this endeavor is being undertaken with the knowledge that it will also push the development of technologies and capabilities that could lead to an affordable to Mars in the coming years.

It sure is an exciting idea: returning to the Moon and laying the groundwork for a permanent human settlement there. It is also exciting when considered in the larger context of space exploration, how a base on the Moon will help us to reach further into space. To Mars, to the Asteroid Belt, perhaps to the outer Solar System and beyond.

And with each step, the opportunities for resource utilization and scientific research will expand accordingly. It may sounds like the stuff of dreams; but then again, so did the idea of putting a man on the Moon before the end of the 1960s. If there’s one thing that particular experience taught us, it’s that setting foot on another world leaves lasting footprints!

Further Reading: New Space

The post Moonbase by 2022 For $10 Billion, Says NASA appeared first on Universe Today.

ESA Planning To Build An International Villageā€¦ On The Moon!

The ESA recently elaborated its plan to create a Moon base by the 2030s. Credit: Foster + Partners is part of a consortium set up by the European Space Agency to explore the possibilities of 3D printing to construct lunar habitations. Credit: ESA/Foster + Partners

With all the talk about manned missions to Mars by the 2030s, its easy to overlook another major proposal for the next great leap. In recent years, the European Space Agency has been quite vocal about its plan to go back to the Moon by the 2020s. More importantly, they have spoken often about their plans to construct a moon base, one which would serve as a staging platform for future missions to Mars and beyond.

These plans were detailed at a recent international symposium that took place on Dec. 15th at the the European Space Research and Technology Center in Noordwijk, Netherlands. During the symposium, which was titled “Moon 2020-2030 – A New Era of Coordinated Human and Robotic Exploration”, the new Director General of the ESA – Jan Woerner – articulated his agency’s vision.

The purpose of the symposium – which saw 200 scientists and experts coming together to discuss plans and missions for the next decade – was to outline common goals for lunar exploration, and draft methods on how these can be achieved cooperatively. Intrinsic to this was the International Space Exploration Coordinated Group‘s (ISECG) Global Exploration Roadmap, an agenda for space exploration that was drafted by the group’s 14 members – which includes NASA, the ESA, Roscosmos, and other federal agencies.

This roadmap not only lays out the strategic significance of the Moon as a global space exploration endeavor, but also calls for a shared international vision on how to go about exploring the Moon and using it as a stepping stone for future goals. When it came time to discuss how the ESA might contribute to this shared vision, Woerner outlined his agency’s plan to establish an international lunar base.

In the past, Woerner has expressed his interest in a base on the Moon that would act as a sort of successor to the International Space Station. Looking ahead, he envisions how an international community would live and perform research in this environment, which would be constructed using robotic workers, 3D printing techniques, and in-situ resources utilization.

The construction of such a base would also offer opportunities to leverage new technologies and forge lucrative partnerships between federal space agencies and private companies. Already, the ESA has collaborated with the architectural design firm Foster + Partners to come up with the plan for their lunar village, and other private companies have also been recruited to help investigate other aspects of building it.

Going forward, the plan calls for a series of manned missions to the Moon beginning in the 2020s, which would involve robot workers paving the way for human explorers to land later. These robots would likely be controlled through telepresence, and would combine lunar regolith with magnesium oxide and a binding salt to print out the shield walls of the habitat.

At present, the plan is for the base to be built in southern polar region, which exists in a near-state of perpetual twilight. Whether or not this will serve as a suitable location will be the subject of the upcoming Lunar Polar Sample Return mission – a joint effort between the ESA and Roscosmos that will involve sending a robotic probe to the Moon’s South Pole-Aitken Basin by 2020 to retrieve samples of ice.

This mission follows in the footsteps of NASA’s Lunar Reconnaissance Orbiter (LRO), which showed that the Shakleton crater – located in the Moon’s southern polar region – has an abundant supply of water ice. This could not only be used to provide the Moon base with a source of drinking water, but could also be converted into hydrogen to refuel spacecraft on their way to and from Earth.

As Woerner was quoted as saying by the Daily Mail during the course of the symposium, this lunar base would provide the opportunity for scientists from many different nations to live and work together:

The future of space travel needs a new vision. Right now we have the Space Station as a common international project, but it won’t last forever. If I say Moon Village, it does not mean single houses, a church, a town hall and so on… My idea only deals with the core of the concept of a village: people working and living together in the same place. And this place would be on the Moon. In the Moon Village we would like to combine the capabilities of different spacefaring nations, with the help of robots and astronauts. The participants can work in different fields, perhaps they will conduct pure science and perhaps there will even be business ventures like mining or tourism.

http://video.dailymail.co.uk/video/bc/rtmp_uds/1418450360/2015/05/06/1418450360_4220193384001_4219972182001.mp4

Naturally, the benefits would go beyond scientific research and international cooperation. As NexGen Space LLC (a consultant company for NASA) recently stated, such a base would be a major stepping stone on the way to Mars. In fact, the company estimated that if such a base included refueling stations, it could cut the cost of any future Mars missions by about $10 billion a year.

And of course, a lunar base would also yield valuable scientific data that would come in handy for future missions. Located far from Earth’s protective magnetic field, astronauts on the Moon (and in circumpolar obit) would be subjected to levels of cosmic radiation that astronauts in orbit around Earth (i.e. aboard the ISS) are not. This data will prove immeasurably useful when plotting upcoming missions to Mars or into deep space.

An additional benefit is the possibility of creating an international presence on the Moon that would ensure that the spirit of the Outer Space Treaty endures. Signed back in 1966 at the height of the “Moon Race”, this treaty stated that “the exploration and use of outer space shall be carried out for the benefit and in the interests of all countries and shall be the province of all mankind.”

In other words, the treaty was meant to ensure that no nation or space agency could claim anything in space, and that issues of territorial sovereignty would not extend to the celestial sphere. But with multiple agencies discussing plans to build bases on the Moon – including NASA, Roscosmos, and JAXA – it is possible that issues of “Moon sovereignty” might emerge at some point in the future.

http://wpc.50e6.edgecastcdn.net/8050E6/mmedia-http/download/public/videos/2016/02/049/orig-1602_049_AR_EN.mp4

And having a base that could facilitate regular trips to the Moon would also be a boon for the burgeoning space tourism industry. Beyond offering trips into Low Earth Orbit (LEO) aboard Virgin Galactic, Richard Branson has also talked about the possibility of offering trips to the Moon by 2043. Golden Spike, another space tourism company, also hopes to offer round-trip lunar adventures someday (at a reported $750 million a pop).

Other private space ventures that are looking to make the Moon a tourist destination include Space Adventures and Excalibur Almaz – both of which are hoping to offer lunar fly-bys (no Moon walks, sorry) for $150 million apiece someday. Many analysts predict that in the coming decade, this industry will begin to (no pun intended) take flight. As such, establishing infrastructure there ahead of time would certainly be beneficial.

“We’re going back to the Moon”. That appeared to be central the message behind the recent symposium and the ESA’s plans for future space exploration. And this time, it seems, we will be staying there! And from there, who knows? The Universe is a big place…

Further Reading: European Space Agency

The post ESA Planning To Build An International Village… On The Moon! appeared first on Universe Today.

Star Trekking: We Humans Can Beam Tools Into Space Without A Transporter

In the 1960s, we thought the best way of sending stuff between Earth and space was through a transporter. These days, turns out all it takes is an e-mail and a special 3-D printer. The first tool created in space, a rachet, was made last week on the International Space Station using plans beamed from […]