A Planet With A 27,000 Year Orbit & That’s Just Where The Strangeness Begins

The star system CVSO 30, which was found to have two exoplanets with extreme orbital periods. If you look closely, you can see 30c to the upper left of the star. Credit: ESO

Every planet in the Solar System has its own peculiar orbit, and these vary considerably. Whereas planet Earth takes 365.25 days to complete a single orbit about our Sun, Mars takes almost twice as long – 686.971 days. Then you have Jupiter and the other gas giants, which take between 11.86 and 164.8 years to orbit our Sun. But even with these serving as examples, astronomers were not prepared for what they found when they looked at CVSO 30.

This star system, which lies some 1200 light years from Earth, has been found in recent years to have two candidate exoplanets. These planets, which are many times the mass of Jupiter, were discovered by an international team of astronomers using both the Transit Method and Direct Imaging. And what they found was very interesting: one planet has an orbital period of less than 11 days while the other takes a whopping 27,000 years to orbit its parent star!

In addition to being a big surprise, the detection of these two planets using different methods was an historic achievement. Up until now, the vast majority of the over 2,000 exoplanets discovered have been detected thanks to indirect methods. These include the aforementioned Transit Method, which detects planets by measuring the dimming effect they cause when crossing their parent star’s path, and the Radial Velocity Method, which measures the gravitational effect planets have on their parent star.

In 2012, astronomers used the Transit Method to detect CVSO 30b, a planet with 5 to 6 times the mass of Jupiter, and which orbits its star at a distance of only 1.2 million kilometers (by comparison, Mercury orbits our Sun at a distance of 58 million kilometers). From these characteristics, CVSO 30b can be described as a particularly “hot-Jupiter”.

In contrast, Direct Imaging has been used to spot only a few dozen exoplanets. The reason for this is because it is typically quite difficult to detect the light reflected by a planet’s atmosphere due it being drowned out by the light of its parent star. It can also quite demanding when it comes to the instrument involved. Still, compared to indirect methods, it can be more effective when it comes to exploring the remote regions of a star.

Thanks to the efforts of an international team of astronomers, who combined the of the Keck Observatory in Hawaii, the ESO’s Very Large Telescope in Chile, and the Spanish National Research Council’s (CSIC) Calar Alto Observatory, CVSO 30c was spotted in remote regions around its parent star, orbiting at a distance of around 666 AU.

The details of the discovery were published in a paper titled “Direct Imaging discovery of a second planet candidate around the possibly transiting planet host CVSO 30“. In it, the researchers – who hail from such prestigious institutions as the Cerro Tololo Inter-American Observatory, the Jena Observatory, the European Space Agency and the Max Planck Institute for Astronomy – explained the methods used to find the exoplanet, and the significance of its discovery.

As Tobias Schmidt – of the University of Hamburg, the Astrophysical Institute and University Observatory Jena, and the lead author of the paper – told Universe Today via email:

“[30b and 30c] are both unusual on their own. CVSO 30b is the first transiting planet around a star as young as 2.5 million years. Published in 2012, all previously detected transiting planets were older than few hundred million years… It has been a surprise to find a planetary mass companion at 662 AU, or 662 times the distance from Earth to the Sun, from a primary star having only about 0.4 solar masses. According to the standard model, planets form in disks around the star. But none of the observed disks around such low-mass stars is large enough to form such an object.”

In other words, it is surprising to find two exoplanet candidates with several times the mass of Jupiter (aka. Super-Jupiters) orbiting a star as small as CVSO 30. But to find that two exoplanets with such a disparity in terms of their respective distance from their star (despite being similar in mass) was particularly surprising.

Relying on high-contrast photometric and spectroscopic observations from the Very Large Telescope, the Keck telescopes, and the Calar Alto observatory, the international team was able to spot 30c using a technique known as lucky imaging. This process, which is used by ground-based telescopes, involves many high-speed, quick exposure photos being taken to minimize atmospheric interference.

What they found was an exoplanet with a wide orbit that was between 4 and 5 Jupiter masses, and was also very young – less than 10 million years old. What’s more, the spectroscopic data indicated that it is unusually blue for a planet, as most other planet candidates of its kind are very red. The researchers concluded from this that it is likely that 30c is the first young planet of its kind to be directly imaged.

They further concluded that 30 c is also likely the first “L-T transition object” younger than 10 million years to be found orbiting a star. L-T transition objects are a type of brown dwarf – objects that are too large to be considered planets, but too small to be considered stars. Typically they are found embedded in large clouds of gas and dust, or on their own in space.

Paired with its companion – 30 b, which is impossibly close to its parent star – 30 c is not believed to have formed at its current position, and is likely not stable in the long-term. At least, not where current models of planetary formation and orbit are concerned. However, as Prof. Schmidt indicated, this offers a potential explanation for the odd nature of these exoplanets.

“We do think this is a very good hint,” he said, “that the two objects might have formed regularly around the star at a separation comparable to Jupiter or Saturn’s separation from the Sun, then interacted gravitationally and were scattered to their current orbits. However this is still speculation, further investigations will try to prove this. Both have about the same mass of few Jupiter masses, the inner one might be even lower.”

The discovery is also significant since it was the first time that these two detection methods – Transit and Direct Imaging – were used to confirm exoplanet candidates around the same star. In this case, the methods were quite complimentary, and present opportunities to learn more about exoplanets. As Professor Schmidt explained:

“Both Transit method and radial velocity method have problems finding planets around young stars, as the activity of young stars is disturbing the search for them. CVSO 30 b was the first very young planet found with these methods, currently a hand full of candidates exist. Direct imaging, on the other hand, is working best for young planets as they still contract and are thus self-luminous. It is therefore great luck that a far out planet was found around the very first young star hosting a inner planet…

“However, the real advantage of transit and direct imaging methods is that the two objects can now be investigated in greater detail. While we can use the direct light from the imaging for spectroscopy, i.e. split the light according to its wavelength, we hope to achieve the same for the inner planet candidate. This is possible as the light passes through the atmosphere of the planet during transits and some of the elements are absorbed by the composition material of the atmosphere. So we do hope to learn a lot about planet formation, thus also formation of the early Solar System and about young planets in particular from the CVSO 30 system.”

Since astronomers first began began to find exoplanet candidates in distant star systems, we have come to learn just how diverse our Universe really is. Many of the discoveries have challenged our notions about where planets can form around their parent star, while others have showed us that planets can take many different forms.

As time goes on and our exploration of the local Universe advances, we will be challenged to find explanations for how it all fits together. And from that, new and more comprehensive models will no doubt emerge.

Further Reading: IAA, arXiv

The post A Planet With A 27,000 Year Orbit & That’s Just Where The Strangeness Begins appeared first on Universe Today.

First Detection of Water Clouds Outside Our Solar System

Artist's conception of how WISE 0855 might appear if viewed close-up in infrared light. Artwork by Joy Pollard, Gemini Observatory/AURA.

Brown dwarfs – those not-quite-a-planet and not-quite-a-star objects – are intriguing oddities that are too low in mass to burn hydrogen, but are more massive than planets. They only emit a faint amount of light, so they are hard to detect, making scientists unsure of how many of them might be out there in our galaxy.

But astronomers have been keeping an eye one particular brown dwarf known called WISE 0855. Just 7.2 light-years from Earth, it is the coldest known object outside of our Solar System and is just barely visible at infrared wavelengths. But with some crafty spectroscopic observing techniques, astronomers have now determined this object has some exciting characteristics: its atmosphere is full of clouds of water vapor. This is the first time water clouds have been detected outside of our Solar System.

“It’s five times fainter than any other object detected with ground-based spectroscopy at this wavelength,” said Andrew Skemer, assistant professor of astronomy and astrophysics at UC Santa Cruz and the first author on a paper on WISE 0855 published in Astrophysical Journal Letters (paper is available on arXiv here). “Now that we have a spectrum, we can really start thinking about what’s going on in this object. Our spectrum shows that WISE 0855 is dominated by water vapor and clouds, with an overall appearance that is strikingly similar to Jupiter.”

This brown dwarf’s full name is WISE J085510.83-071442.5, but we’re among friends, so it’s W0855 for short. It has about five times the mass of Jupiter and is the coldest brown dwarf ever detected, with an average temperature of about 250 degrees Kelvin, or minus 10 degrees F, minus 20 C. That makes it nearly as cold as Jupiter, which is 130 degrees Kelvin.

“WISE 0855 is our first opportunity to study an extrasolar planetary-mass object that is nearly as cold as our own gas giants,” Skemer said.

Skemer and his team used the Gemini-North telescope in Hawaii and the Gemini Near Infrared Spectrograph to observe WISE 0855 over 13 nights for a total of about 14 hours. Skemer was part of a team that studied this object in 2014 found tentative indications of water clouds based on very limited photometric data. Skemer said obtaining a spectrum (which separates the light from an object into its component wavelengths) was the only way to detect this object’s molecular composition.

A video about the 2014 discovery and study of WISE 0855:

WISE 0855 is too faint for conventional spectroscopy at optical or near-infrared wavelengths, but the team took up a challenge and looked at the thermal emissions from the object at wavelengths in a narrow window around 5 microns.

“I think everyone on the research team really believed that we were dreaming to think we could obtain a spectrum of this brown dwarf because its thermal glow is so feeble,” said Skemer. WISE 0855, is so cool and faint that many astronomers thought it would be years before a spectrum could be obtained. “I thought we’d have to wait until the James Webb Space Telescope was operating to do this,” Skemer said.

This spectroscopic view provided a glimpse into the environment of WISE 0855’s atmosphere. With the data in hand, the researchers then developed atmospheric models of the equilibrium chemistry for a brown dwarf at 250 degrees Kelvin and calculated the resulting spectra under different assumptions, including cloudy and cloud-free models. The models predicted a spectrum dominated by features resulting from water vapor, and the cloudy model yielded the best fit to the features in the spectrum of WISE 0855.

While the spectra of this object are strikingly similar to Jupiter, WISE 0855 appears to have a less turbulent atmosphere.

“The spectrum allows us to investigate dynamical and chemical properties that have long been studied in Jupiter’s atmosphere, but this time on an extrasolar world,” Skemer said.

The scientists say WISE 0855 looks more similar to Jupiter than any exoplanet yet discovered, which is especially intriguing since the Juno mission has just begun its exploration at the giant world. Jupiter, along with the other gas planets in our Solar System, all have clouds and storms, although Jupiter’s clouds are mainly made of ammonia with lower level clouds perhaps containing water. One of Juno’s goals is to determine the global water abundance at Jupiter.

Sources: UC Santa Cruz, Gemini

The post First Detection of Water Clouds Outside Our Solar System appeared first on Universe Today.

Three New Earth-sized Planets Found Just 40 Light-Years Away

Artist's impression of three newly-discovered exoplanets orbiting an ultracool dwarf star TRAPPIST-1. Credit: ESO/M. Kornmesser/N. Risinger (skysurvey.org).

Three more potentially Earthlike worlds have been discovered in our galactic backyard, announced online today by the European Southern Observatory. Researchers using the 60cm TRAPPIST telescope at ESO’s La Silla observatory in Chile have identified three Earth-sized exoplanets orbiting a star just 40 light-years away.

The star, originally classified as 2MASS J23062928-0502285 but now known as TRAPPIST-1, is an dim “ultracool” brown dwarf only .05% as bright as our Sun . Located in the constellation Aquarius, it’s now the 37th-farthest star known to host orbiting exoplanets.

The exoplanets were discovered via the transit method (TRAPPIST stands for Transiting Planets and Planetesimals Small Telescope) through which the light from a star is observed to dim slightly by planets passing in front of it from our point of view.

As a brown dwarf “failed star” TRAPPIST-1 is a very small and dim and isn’t easily visible from Earth, but it’s its very dimness that has allowed its planets to be discovered with existing technology. Their subtle silhouettes may have been lost in the glare of larger, brighter stars.

Follow-up measurements of the three exoplanets indicated that they are all approximately Earth-sized and have temperatures ranging from Earthlike to Venuslike (which is, admittedly, a fairly large range.) They orbit their host star very closely with periods measured in Earth days, not years.

“With such short orbital periods, the planets are between 20 and 100 times closer to their star than the Earth to the Sun,” said Michael Gillon, lead author of the research paper. “The structure of this planetary system is much more similar in scale to the system of Jupiter’s moons than to that of the Solar System.”

Read more: Mini Solar System Around a Brown Dwarf

Although these three new exoplanets are Earth-sized they do not yet classify as “potentially habitable,” at least by the standards of the Planetary Habitability Laboratory (PHL) operated by the University of Puerto Rico at Arecibo. The planets fall outside PHL’s required habitable zone; two are too close to the host star and one is too far away.

This does not mean that the exoplanets are completely uninhabitable, though; it’s entirely possible that there are regions on or within them where life could exist, not unlike Mars or some of the moons in our own Solar System.

Discovering three planets orbiting such a small yet extremely common type of star hints that there are likely many, many more such worlds in our galaxy and the Universe as a whole.

“So far, the existence of such ‘red worlds’ orbiting ultra-cool dwarf stars was purely theoretical, but now we have not just one lonely planet around such a faint red star but a complete system of three planets,” said study co-author Emmanuel Jehin.

The team’s research was presented in a paper entitled “Temperate Earth-sized planets transiting a nearby ultracool dwarf star” and will be published in Nature.

Source: ESO

The post Three New Earth-sized Planets Found Just 40 Light-Years Away appeared first on Universe Today.

By Jove: Our 2016 Guide to Jupiter at Opposition

Getting closer... Jupiter, imaged on February 24th. Image credit and copyright: Efrain Morales

Ready to explore the largest planet in our solar system? The month of March heralds the return of Jupiter to evening skies. Early March 2016 sees the planet Jupiter starting off the month less than one degree from the star Sigma Leonis. Opposition occurs on March 8th, at 11:00 Universal Time (UT). Watch out for those double shadow transits, as we’re in the midst of a season of favorable events involving the Jovian moons (See last week’s post). During opposition, the four large major moons of Jupiter cast their shadows nearly straight back onto the Jovian cloud-tops as seen from our Earthly perspective. At quadrature—the point when Jupiter stakes out a ‘quadrant’ of the sky 90 degrees east or west of the Sun as seen from the Earth –the moons and the planet Jupiter itself casts their shadows off to one side.

The Moon occults Jupiter three times in 2016: July 9th, August 6th and September 2nd. The very best is the final event on September 2nd, which occurs during daylight hours for Mexico and the western US, just 18 degrees east of the Sun in the evening sky. Jupiter also passes just 4′ from Venus the month prior on August 27th. Solar opposition for Jupiter in 2016 occurs on September 26th.

Every ancient culture noticed five ‘wandering stars’ that stubbornly refused to maintain their station, and instead moved across the sky. The four major points that describe a planet’s apparent motion are: opposition, solar conjunction, and the east and west quadrature points.

As the name suggests, opposition is simply the point at which a given outer planet rises ‘opposite’ to the setting Sun. Jupiter orbits the Sun once every 11.9 years, meaning it has moved roughly one zodiacal constellation eastward per every 399 days between oppositions. Oppositions falling during northern hemisphere winter place a planet high in the sky, a position which the Sun will occupy six months before and hence. Jupiter’s opposition in 2016 falls just 11 days prior to the March northward equinox on March 20th, placing Jupiter on the Leo-Virgo border very near the September equinoctial point in the astronomical constellation Virgo. In fact, Jupiter plunges south of the celestial equator on September 21st 2016, not to cross northward again until May 24th, 2022.

Visually, Jupiter shines at its brightest this season at magnitude -2.5. Jupiter is the fourth brightest natural object in the skies of the Earth, right behind the Sun, Moon and Venus. Place Jupiter at the Moon’s distance from the Earth, and it would span a terrifying 20 degrees across the sky. By coincidence, the innermost large Moon Io orbits Jupiter at nearly the same distance as the Moon does from the Earth. Is Jupiter a friend or foe? There’s been a recent suggestion that we’ve perhaps overstated the giant planet’s alleged role as a cosmic goal tender, warding off potentially hazardous comets. Any inbound cometary body crossing Jupiter’s orbit stands a 40% chance of having its orbit altered, a good or bad outcome from the view of the Earth.

Here, from our current base camp in Rota, Spain, Jupiter sits high over the Atlantic in the early morning hours, a beacon marking a warning of the supposed ‘ends of the Earth’ to medieval sailors daring to strike out westward.

Though Jupiter is sometimes fancied as a ‘failed star,’ it also fails this definition miserably: Jupiter would need about a dozen times its current mass to rate as even a sub-stellar brown dwarf.

In the eyepiece of even a small 60mm refractor, the main two equatorial cloud bands are immediately visible, striping the ochre disk of the bloated world. One major mystery is just why the Southern Equatorial Belt pulls a vanishing act every decade or so, as it last did in 2010, while the other Northern Equatorial Belt seems permanent. And speaking of which, the famous ‘Great Red Spot‘ is now not as ‘grand’ in recent times, appearing a salmon-to-brick brown colored.

First noted by Giovanni Cassini in 1665, the intervening centuries have seen the massive storm shrink. Will this iconic planetary atmospheric feature disappear entirely in our lifetimes? We’ll surely miss the Great Red Spot if so, as it made a good ‘tick mark’ to gauge Jupiter’s rotation. Spinning around once every 9.9 hours, the Jovian ‘day’ is the shortest of any planet in the solar system. In fact, if you follow Jupiter from sunset to sunrise during opposition, you can just about witness one full rotation… in a single night!

At opposition, Jupiter appears 45” in size, 1/40th the diameter of a Full Moon. The Moon also pairs with Jupiter on the evening of March 21st/22nd, sitting two degrees from the planet.

And get set to explore Jupiter this summer, as NASA’s Juno spacecraft enters orbit around the giant planet on July 4th. Launched in August, 2011, Juno will become the seventh spacecraft to visit the planet and only the second (after Galileo) to enter orbit.

2016 is an amazing year for all things Jovian!

The post By Jove: Our 2016 Guide to Jupiter at Opposition appeared first on Universe Today.

Hubble Directly Measures Rotation of Cloudy ‘Super-Jupiter’

Illustration of the extrasolar planet 2M1207b (foreground) orbiting a brown dwarf. Credits: NASA, ESA, and G. Bacon/STScI

Astronomers using the Hubble Space Telescope have measured the rotation rate of an extreme exoplanet 2M1207b by observing the varied brightness in its atmosphere. This is the first measurement of the rotation of a massive exoplanet using direct imaging.

Little by little we’re coming to know at least some of the 2,085 exoplanets discovered to date more intimately despite their great distances and proximity to the blinding light of their host stars. 2M1207b is about four times more massive than Jupiter and dubbed a “super-Jupiter”. Super-Jupiters fill the gap between Jupiter-mass planets and brown dwarf stars. They can be up to 80 times more massive than Jupiter yet remain nearly the same size as that planet because gravity compresses the material into an ever denser, more compact sphere.

2M1207b lies 170 light years from Earth and orbits a brown dwarf at a distance of 5 billion miles. By contrast, Jupiter is approximately 500 million miles from the sun. You’ll often hear brown dwarfs described as “failed stars” because they’re not massive enough for hydrogen fusion to fire up in their cores the way it does in our sun and all the rest of the main sequence stars.

Researchers used Hubble’s exquisite resolution to precisely measure the planet’s brightness changes as it spins and nailed the rotation rate at 10 hours, virtually identical to Jupiter’s. While it’s fascinating to know a planet’s spin, there’s more to this extraordinary exoplanet. Hubble data confirmed the rotation but also showed the presence of patchy, “colorless” (white presumably) cloud layers. While perhaps ordinary in appearance, the composition of the clouds is anything but.

The planet appears bright in infrared light because it’s young (about 10 million years old) and still contracting, releasing gravitational potential energy that heats it from the inside out. All that extra heat makes 2M1207b’s atmosphere hot enough to form “rain” clouds made of vaporized rock. The rock cools down to form tiny particles with sizes similar to those in cigarette smoke. Deeper into the atmosphere, iron droplets are forming and falling like rain, eventually evaporating as they enter the lower levels of the atmosphere.

“So at higher altitudes it rains glass, and at lower altitudes it rains iron,” said Yifan Zhou of the University of Arizona, lead author on the research paper in a recent Astrophysical Journal. “The atmospheric temperatures are between about 2,200 to 2,600 degrees Fahrenheit.” Every day’s a scorcher on 2M1207b.

Both Jupiter and Saturn also emit more heat than they receive from the sun because they too are still contracting despite being 450 times older. The bigger you are, the slower you chill.

All the planets in our Solar System possess only a fraction of the mass of the Sun. Even mighty Jove is a thousand times less massive. But Mr. Super-Jupiter’s a heavyweight compared to its brown dwarf host, being just 5-7 times less massive. While Jupiter and the rest of the planets formed by the accretion of dust and rocks within a clumpy disk of material surrounding the early Sun, it’s thought 2M1207b and its companion may have formed throughout the gravitational collapse of a pair of separate disks.

This super-Jupiter will an ideal target for the James Webb Space Telescope, a space observatory optimized for the infrared scheduled to launch in 2018. With its much larger mirror — 21-feet (6.5-meters) — Webb will help astronomers better determine the exoplanet’s atmospheric composition and created more detailed maps from brightness changes.

Teasing out the details of 2M1207b’s atmosphere and rotation introduces us to a most alien world the likes of which never evolved in our own Solar System. I feel like I’m aboard the Starship Enterprise visiting far-flung worlds. Only this is better. It’s real.

The post Hubble Directly Measures Rotation of Cloudy ‘Super-Jupiter’ appeared first on Universe Today.

Massive Planet Gone Rogue Discovered

In this artist's conception, a rogue planet drifts through space. Credit: Christine Pulliam (CfA)

A massive rogue planet has been discovered in the Beta Pictoris moving group. The planet, called PSO J318.5338-22.8603 (Sorry, I didn’t name it), is over eight times as massive as Jupiter. Because it’s one of the few directly-imaged exoplanets we know of, and is accessible for study by spectroscopy, this massive planet will be extremely important when piecing together the details of planetary formation and evolution.

Most planets outside our solar system are not directly observable. They are discovered when they transit in front of their host star. That’s how the Kepler mission finds exoplanets. After that, their properties are inferred by their gravitational interactions with their star and with any other planets in their system. We can infer a lot, and get quite detailed, but studying planets with spectroscopy is a whole other ball game.

The team of researchers, led by K. Allers of Bucknell University, used the Gemini North telescope, and its Near-Infrared Spectrograph, to find PSO’s  radial and rotational velocities. As reported in a draft study on January 20th, PSO J318.5338-22.8603 (PSO from now on…) was confirmed as a member of the Beta Pictoris moving group, a group of young stars with a known age.

The Beta Pictoris moving group is a group of stars moving through space together. Since they are together, they are understood to be formed at the same time, and to have the same age. Confirming that PSO is a member of this group also confirmed PSO’s age.

Once the age of PSO was known, its identity as a planet was confirmed. Without knowing the age, it’s impossible to rule it out as a brown dwarf, a “failed star” that lacked the mass to ignite fusion.

This new rogue planet is 8.3 + or – 0.5 times the mass of Jupiter, and its temperature is about 1130 K. Spectra from the Gemini scope show that PSO rotates at between 5 to 10.2 hours, and that its radial velocity is within the envelope of values for this group. According to the researchers, determining these properties accurately means that PSO J318.5338-22.8603 is “an important benchmark for studies of young, directly imaged planets.”

PSO is in an intermediate position in terms of other planets in the Beta Pictoris moving group. 51 Eridani-b is another directly imaged planet, only slightly larger than Jupiter, discovered in 2014. The third planet in the group is Beta Pictoris b, which is thought to be almost 11 times as massive as Jupiter.

Rogue, or “free-floating” planets like PSO J318.5338-22.8603 are important because they are not near a star. Light from a star dominates the star’s  surroundings, and makes it difficult to discern much detail in the planets that orbit the star. Now that PSO is confirmed as a planet, rather than a brown dwarf, studying it will add to our knowledge of planetary formation.

The post Massive Planet Gone Rogue Discovered appeared first on Universe Today.

Watch This Amazing Video of an Exoplanet in Motion

Exoplanet Beta Pic b orbiting Beta Pictoris from Dunlap Institute on Vimeo. Just. Wow. The motion of an alien world, reduced to a looping .gif. We truly live in an amazing age. A joint press release out of the Gemini Observatory and the University of Toronto demonstrates a stunning first: a sequence of direct images […]