Gravitational Astronomy? How Detecting Gravitational Waves Changes Everything

We’ve now had multiple detections of gravitational waves, opening up a whole new field: gravitational astronomy. We talk about the detections made so far, and how we can see the Universe in a whole new way.

The post Gravitational Astronomy? How Detecting Gravitational Waves Changes Everything appeared first on Universe Today.

The 2016 Nobel Prize In Physics: It’s Complicated

This year's Nobel Prize in physics highlights the complications of awarding breakthrough achievements. Credit:

The Nobel Prize in physics is a coveted award. Every year, the prize is bestowed upon the individual who is deemed to have made the greatest contribution to the field of physics during the preceding year. And this year, the groundbreaking discovery of gravitational waves is anticipated to be the main focus.

This discovery, which was announced on February 11th, 2016, was made possible thanks to the development of the Laser Interferometer Gravitational-Wave Observatory (LIGO). As such, it is expected that the three scientists that are most responsible for the invention of the technology will receive the Nobel Prize for their work. However, there are those in the scientific community who feel that another scientist – Barry Barish – should also be recognized.

But first, some background is needed to help put all this into perspective. For starers, gravitational waves are ripples in the curvature of spacetime that are generated by certain gravitational interactions and whic propagate at the speed of light. The existence of such waves has been postulated since the late 19th century.

However, it was not until the late 20th century, thanks in large part to Einstein and his theory of General Relativity, that gravitational-wave research began to emerge as a branch of astronomy. Since the 1960s, various gravitational-wave detectors have been built, which includes the LIGO observatory.

Founded as a Caltech/MIT project, LIGO was officially approved by the National Science Board (NSF) in 1984. A decade later, construction began on facility’s two locations – in Hanford, Washington and Livingston, Louisiana. By 2002, it began to obtain data, and work began on improving its original detectors in 2008 (known as the Advanced LIGO Project).

The credit for the creation of LIGO goes to three scientists, which includes Rainer Weiss, a professor of physics emeritus at the Massachusetts Institute of Technology (MIT); Ronald Drever, an experimental physics who was professor emeritus at the California Institute of Technology and a professor at Glasgow University; and Kip Thorne, the Feynman Professor of Theoretical Physics at Caltech.

In 1967 and 68, Weiss and Thorne initiated efforts to construct prototype detectors, and produced theoretical work to prove that gravitational waves could be successfully analyzed. By the 1970s, using different methods, Weiss and Denver both succeeded in building detectors. In the coming years, all three men remained pivotal and influential, helping to make gravitational astronomy a legitimate field of research.

However, it has been argued that without Barish – a particle physicist at Caltech – the discovery would never have been made. Having become the Principal Investigator of LIGO in 1994, he inherited the project at a very crucial time. It had begun funding a decade prior, but coordinating the work of Wiess, Thorne and Drever (from MIT, Caltech and the University of Glasgow, respectively) proved difficult.

As such, it was decided that a single director was needed. Between 1987 and 1994, Rochus Vogt – a professor emeritus of Physics at Caltech – was appointed by the NSF to fill this role. While Vogt brought the initial team together and helped to get the construction of the project approved, he proved difficult when it came to dealing with bureaucracy and documenting his researchers progress.

As such, between 1989 through 1994, LIGO failed to progress technically and organizationally, and had trouble acquiring funding as well. By 1994, Caltech eased Vogt out of his position and appointed Barish to the position of director. Barish got to work quickly, making significant changes to the way LIGO was administered, expanding the research team, and developing a detailed work plan for the NSF.

Barish was also responsible for expanding LIGO beyond its Caltech and MIT constraints. This he did through the creation of the independent LIGO Scientific Collaboration (LSC), which gave access to outside researchers and institutions. This was instrumental in creating crucial partnerships, which included the UK Science and Technology Facilities Council, the Max Planck Society of Germany, and the Australian Research Council.

By 1999, construction had wrapped up on the LIGO observatories, and by 2002, they began taking their first bits of data. By 2004, the funding and groundwork was laid for the next phase of LIGO development, which involved a multi-year shut-down while the detectors were replaced with improved “Advanced LIGO” versions.

All of this was made possible by Barish, who retired in 2005 to head up other projects. Thanks to his sweeping reforms, LIGO got to work after an abortive start, began to produce data, procured funding, crucial partnerships, and now has more than 1000 collaborators worldwide, thanks to LSC program he established.

Little wonder then why some scientists think the Nobel Prize should be split four-ways, awarding the three scientists who conceived of LIGO and the one scientist who made it happen. And as Barish himself was quoted as saying by Science:

“I think there’s a bit of truth that LIGO wouldn’t be here if I didn’t do it, so I don’t think I’m undeserving. If they wait a year and give it to these three guys, at least I’ll feel that they thought about it,” he says. “If they decide [to give it to them] this October, I’ll have more bad feelings because they won’t have done their homework.”

However, there is good reason to believe that the award will ultimately be split three ways, leaving Barish out. For instance, Weiss, Drever, and Thorne have been honored three times already this year for their work on LIGO. This has included the Special Breakthrough Prize in Fundamental Physics, the Gruber Cosmology Prize, and Kavli Prize in Astrophysics.

What’s more, in the past, the Nobel Prize in physics has tended to be awarded to those responsible for the intellectual contributions leading to a major breakthrough, rather than to those who did the leg work. Out of the last six Prizes issued (between 2010 and 2015), five have been awarded for the development of experimental methods, observational studies, and theoretical discoveries.

Only one award was given for a technical development. This was the case in 2014 where the award was given jointly to Isamu Akasaki, Hiroshi Amano and Shuji Nakamura for “the invention of efficient blue light-emitting diodes which has enabled bright and energy-saving white light sources”.

Basically, the Nobel Prize is a complicated matter. Every year, it is awarded to those who made a considerable contribution to science, or were responsible for a major breakthrough. But contributions and breakthroughs are perhaps a bit relative. Whom we choose to honor, and for what, can also be seen as an indication of what is valued most in the scientific community.

In the end, this year’s award may serve to highlight how significant contributions do not just entail the development of new ideas and methods, but also in bringing them to fruition.

Further Reading: Science, LIGO,

The post The 2016 Nobel Prize In Physics: It’s Complicated appeared first on Universe Today.

Second Gravitational Wave Source Found By LIGO

This image depicts two black holes just moments before they collided and merged with each other, releasing energy in the form of gravitational waves.  Image credit: Numerical Simulations: S. Ossokine and A. Buonanno, Max Planck Institute for Gravitational Physics, and the Simulating eXtreme Spacetime (SXS) project. Scientific Visualization: T. Dietrich and R. Haas, Max Planck Institute for Gravitational Physics.

Lightning has struck twice – maybe three times – and scientists from the Laser Interferometer Gravitational-wave Observatory, or LIGO, hope this is just the beginning of a new era of understanding our Universe. This “lightning” came in the form of the elusive, hard-to-detect gravitational waves, produced by gigantic events, such as a pair of black holes colliding. The energy released from such an event disturbs the very fabric of space and time, much like ripples in a pond. Today’s announcement is the second set of gravitational wave ripples detected by LIGO, following the historic first detection announced in February of this year.

“This collision happened 1.5 billion years ago,” said Gabriela Gonzalez of Louisiana State University at a press conference to announce the new detection, “and with this we can tell you the era of gravitational wave astronomy has begun.”

LIGO’s first detection of gravitational waves from merging black holes occurred Sept. 14, 2015 and it confirmed a major prediction of Albert Einstein’s 1915 general theory of relativity. The second detection occurred on Dec. 25, 2015, and was recorded by both of the twin LIGO detectors.

While the first detection of the gravitational waves released by the violent black hole merger was just a little “chirp” that lasted only one-fifth of a second, this second detection was more of a “whoop” that was visible for an entire second in the data. Listen in this video:

“This is what we call gravity’s music,” said González as she played the video at today’s press conference.

While gravitational waves are not sound waves, the researchers converted the gravitational wave’s oscillation and frequency to a sound wave with the same frequency. Why were the two events so different?

From the data, the researchers concluded the second set of gravitational waves were produced during the final moments of the merger of two black holes that were 14 and 8 times the mass of the Sun, and the collision produced a single, more massive spinning black hole 21 times the mass of the Sun. In comparison, the black holes detected in September 2015 were 36 and 29 times the Sun’s mass, merging into a black hole of 62 solar masses.

The scientists said the higher-frequency gravitational waves from the lower-mass black holes hit the LIGO detectors’ “sweet spot” of sensitivity.

“It is very significant that these black holes were much less massive than those observed in the first detection,” said Gonzalez. “Because of their lighter masses compared to the first detection, they spent more time—about one second—in the sensitive band of the detectors. It is a promising start to mapping the populations of black holes in our universe.”

LIGO allows scientists to study the Universe in a new way, using gravity instead of light. LIGO uses lasers to precisely measure the position of mirrors separated from each other by 4 kilometers, about 2.5 miles, at two locations that are over 3,000 km apart, in Livingston, Louisiana, and Hanford, Washington. So, LIGO doesn’t detect the black hole collision event directly, it detects the stretching and compressing of space itself. The detections so far are the result of LIGO’s ability to measure the perturbation of space with an accuracy of 1 part in a thousand billion billion. The signal from the lastest event, named GW151226, was produced by matter being converted into energy, which literally shook spacetime like Jello.

LIGO team member Fulvio Ricci, a physicist at the University of Rome La Sapienzaa said there was a third “candidate” detection of an event in October, which Ricci said he prefers to call a “trigger,” but it was much less significant and the signal to noise not large enough to officially count as a detection.

But still, the team said, the two confirmed detections point to black holes being much more common in the Universe than previously believed, and they might frequently come in pairs.

“The second discovery “has truly put the ‘O’ for Observatory in LIGO,” said Albert Lazzarini, deputy director of the LIGO Laboratory at Caltech. “With detections of two strong events in the four months of our first observing run, we can begin to make predictions about how often we might be hearing gravitational waves in the future. LIGO is bringing us a new way to observe some of the darkest yet most energetic events in our universe.”

LIGO is now offline for improvements. Its next data-taking run will begin this fall and the improvements in detector sensitivity could allow LIGO to reach as much as 1.5 to two times more of the volume of the universe compared with the first run. A third site, the Virgo detector located near Pisa, Italy, with a design similar to the twin LIGO detectors, is expected to come online during the latter half of LIGO’s upcoming observation run. Virgo will improve physicists’ ability to locate the source of each new event, by comparing millisecond-scale differences in the arrival time of incoming gravitational wave signals.

In the meantime, you can help the LIGO team with the Gravity Spy citizen science project through Zooniverse.

Sources for further reading:
Press releases:
University of Maryland
Northwestern University
West Virginia University
Pennsylvania State University
Physical Review Letters: GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence
LIGO facts page, Caltech

For an excellent overview of gravitational waves, their sources, and their detection, check out Markus Possel’s excellent series of articles we featured on UT in February:

Gravitational Waves and How They Distort Space

Gravitational Wave Detectors and How They Work

Sources of Gravitational Waves: The Most Violent Events in the Universe

The post Second Gravitational Wave Source Found By LIGO appeared first on Universe Today.

New ‘Einstein Ring’ Discovered By Dark Energy Camera

The "Canarias Einstein Ring." The green-blue ring is the source galaxy, the red one in the middle is the lens galaxy. The lens galaxy has such strong gravity, that it distorts the light from the source galaxy into a ring. Because the two galaxies are aligned, the source galaxy appears almost circular. Image: This composite image is made up from several images taken with the DECam camera on the Blanco 4m telescope at the Cerro Tololo Observatory in Chile.

A rare object called an Einstein Ring has been discovered by a team in the Stellar Populations group at the Instituto de Astrofísica de Canarias (IAC) in Spain. An Einstein Ring is a specific type of gravitational lensing.

Einstein’s Theory of General Relativity predicted the phenomena of gravitational lensing. Gravitational lensing tells us that instead of travelling in a straight line, light from a source can be bent by a massive object, like a black hole or a galaxy, which itself bends space time.

Einstein’s General Relativity was published in 1915, but a few years before that, in 1912, Einstein predicted the bending of light. Russian physicist Orest Chwolson was the first to mention the ring effect in scientific literature in 1924, which is why the rings are also called Einstein-Chwolson rings.

Gravitational lensing is fairly well-known, and many gravitational lenses have been observed. Einstein rings are rarer, because the observer, source, and lens all have to be aligned. Einstein himself thought that one would never be observed at all. “Of course, there is no hope of observing this phenomenon directly,” Einstein wrote in 1936.


The team behind the recent discovery was led by PhD student Margherita Bettinelli at the University of La Laguna, and Antonio Aparicio and Sebastian Hidalgo of the Stellar Populations group at the Instituto de Astrofísica de Canarias (IAC) in Spain. Because of the rarity of these objects, and the strong scientific interest in them, this one was given a name: The Canarias Einstein Ring.

There are three components to an Einstein Ring. The first is the observer, which in this case means telescopes here on Earth. The second is the lens galaxy, a massive galaxy with enormous gravity. This gravity warps space-time so that not only are objects drawn to it, but light itself is forced to travel along a curved path. The lens lies between Earth and the third component, the source galaxy. The light from the source galaxy is bent into a ring form by the power of the lens galaxy.

When all three components are aligned precisely, which is very rare, the light from the source galaxy is formed into a circle with the lens galaxy right in the centre. The circle won’t be perfect; it will have irregularities that reflect irregularities in the gravitational force of the lens galaxy.

The objects are more than just pretty artifacts of nature. They can tell scientists things about the nature of the lens galaxy. Antonio Aparicio, one of the IAC astrophysicists involved in the research said, “Studying these phenomena gives us especially relevant information about the composition of the source galaxy, and also about the structure of the gravitational field and of the dark matter in the lens galaxy.”

Looking at these objects is like looking back in time, too. The source galaxy is 10 billion light years from Earth. Expansion of the Universe means that the light has taken 8.5 billion light years to reach us. That’s why the ring is blue; that long ago, the source galaxy was young, full of hot blue stars.

The lens itself is much closer to us, but still very distant. It’s 6 billion light years away. Star formation in that galaxy likely came to a halt, and its stellar population is now old.

The discovery of the Canarias Einstein Ring was a happy accident. Bettinelli was pouring over data from what’s known as the Dark Energy Camera (DECam) of the 4m Blanco Telescope at the Cerro Tololo Observatory, in Chile. She was studying the stellar population of the Sculptor dwarf galaxy for her PhD when the Einstein Ring caught her attention. Other members of the Stellar Population Group then used OSIRIS spectrograph on the Gran Telescopio CANARIAS (GTC) to observe and analyze it further.

The post New ‘Einstein Ring’ Discovered By Dark Energy Camera appeared first on Universe Today.

Astronomy Cast Ep. 371: The Eddington Eclipse Experiment

At the turn of the 20th Century, Einstein’s theory of relativity stunned the physics world, but the experimental evidence needed to be found. And so, in 1919, another respected astronomer, Arthur Eddington, observed the deflection of stars by the gravity of the Sun during a solar eclipse. Here’s the story of that famous experiment. (…)Read […]

Astronomy Cast Ep. 370: The Kaufmann–Bucherer–Neumann Experiments

One of the most amazing implications of Einstein’s relativity is the fact that the inertial mass of an object depends on its velocity. That sounds like a difficult thing to test, but that’s exactly what happened through a series of experiments performed by Kaufmann, Bucherer, Neumann and others. (…)Read the rest of Astronomy Cast Ep. […]

How We’ve ‘Morphed’ From “Starry Night” to Planck’s View of the BICEP2 Field

From the vantage point of a window in an insane asylum, Vincent van Gogh painted one of the most noted and valued artistic works in human history. It was the summer of 1889. With his post-impressionist paint strokes, Starry Night depicts a night sky before sunrise that undulates, flows and is never settled. Scientific discoveries […]