Europa’s Venting Global Ocean May Be Easier To Reach Than We Thought

Artist's impression of a water vapor plume on Europa. Credit: NASA/ESA/K. Retherford/SWRI

Last week, on Tuesday, September 20th, NASA announced that they had made some interesting findings about Jupiter’s icy moon Europa. These were based on images taken by the Hubble Space Telescope, the details of which would be released on the following week. Needless to say, since then, the scientific community and general public have been waiting with baited breath.

Earlier today (September 26th) NASA put an end to the waiting and announced the Hubble findings during a NASA Live conference. According to the NASA panel, which was made up of members of the research team, this latest Europa-observing mission revealed evidence of plumes of saline water emanating from Europa’s surface. If true, this would mean that the moon’s subsurface ocean would be more accessible than previously thought.

Using Hubble’s Space Telescope Imaging Spectrograph (STIS) instrument, the team conducted observations of Jupiter and Europa in the ultra-violet spectrum over the course of 15 months. During that time, Europa passed in front of Jupiter (occulted the gas giant) on 10 separate occasions.

https://youtu.be/RCD0slJetfI

And on three of these occasions, the team saw what appeared to be plumes of water erupting from the surface. These plumes were estimated to be reaching up to 200 km (125 miles) from the southern region of the Europa before (presumably) raining back onto the surface, depositing water ice and material from the interior.

The purpose of the observation was to examine Europa’s possible extended atmosphere (aka. exosphere). The method the team employed was similar to the one used to detect atmospheres around extra-solar planets. As William Sparks of the Space Telescope Science Institute (STScI) in Baltimore (and the team leader), explained in a NASA press release:

“The atmosphere of an extrasolar planet blocks some of the starlight that is behind it. If there is a thin atmosphere around Europa, it has the potential to block some of the light of Jupiter, and we could see it as a silhouette. And so we were looking for absorption features around the limb of Europa as it transited the smooth face of Jupiter.”

When they looked at Europa using this same technique, they noted that small patches on the surface were dark, indicating the absorption of UV light. This corresponded to previous work done Lorenz Roth (of the Southwest Research Institute) and his team of researchers in 2012. At this time, they detected evidence of water vapor coming from Europa’s southern polar region.

As they indicated in a paper detailing their results – titled “Transient Water Vapor at Europa’s South Pole” – Roth’s team also relied on UV observations made using the Hubble telescope. Noting a statistically coincident amount of hydrogen and oxygen emissions, they concluded that this was the result of ejected water vapor being broken apart by Jupiter’s radiation (a process known as radiolysis).

Though their methods differed, Sparks and his research team also found evidence of these apparent water plumes, and in the same place no less. Based on the latest information from STIS, most of the apparent plumes are located in the moon’s southern polar region while another appears to be located in the equatorial region.

“When we calculate in a completely different way the amount of material that would be needed to create these absorption features, it’s pretty similar to what Roth and his team found,” Sparks said. “The estimates for the mass are similar, the estimates for the height of the plumes are similar. The latitude of two of the plume candidates we see corresponds to their earlier work.”

Another interesting conclusion to come from this and the 2012 study is the likelihood that these water plumes are intermittent. Basically, Europa is tidally-locked world, which means the same side is always being presented to us when it transits Jupiter. This occus once every 3.5 days, thus giving astronomers and planetary scientists plenty of viewing opportunities.

But the fact that plumes have been observed at some points and not others would seem to indicate that they are periodic. In addition, Roth’s team attempted to spot one of the plume’s observed by Sparks and his colleagues a week after they reported it. However, they were unable to locate this supposed water source. As such, it would appear that the plumes, if they do exist, are short-lived.

These findings are immensely significant for two reasons. On the one hand, they are further evidence that a warm-water, saline ocean exists beneath Europa’s icy surface. On the other, they indicate that any future mission to Europa would be able to access this salt-water ocean with greater ease.

Ever since the Galileo spacecraft conducted a flyby of the Jovian moon, scientists have believed that an interior ocean is lying beneath Europa’s icy surface – one that has between two and three times as much water as all of Earth’s oceans combined. However, estimates of the ice’s thickness range from it being between 10 to 30 km (6–19 mi) thick – with a ductile “warm ice” layer that increases its total thickness to as much as 100 km (60 mi).

Knowing the water periodically reaches the surface through fissures in the ice would mean that any future mission (which would likely include a submarine) would not have to drill so deep. And considering that Europa’s interior ocean is considered to be one of our best bets for finding extra-terrestrial life, knowing that the ocean is accessible is certainly exciting news.

Naturally, Sparks was clear that this latest information was not entirely conclusive. While he believes that the results were statistically significant, and that there were no indications of artifacts in the data, he also emphasized that observations conducted in the UV wavelength are tricky. Therefore, more evidence is needed before anything can be said definitively.

In the future, it is hoped that future observation will help to confirm the existence of water plumes, and how these could have helped create Europa’s “chaos terrain”. Future missions, like NASA’s James Webb Space Telescope (scheduled to launch in 2018) could help confirm plume activity by observing the moon in infrared wavelengths.

As Paul Hertz, the director of the Astrophysics Division at NASA Headquarters in Washington, said:

“Hubble’s unique capabilities enabled it to capture these plumes, once again demonstrating Hubble’s ability to make observations it was never designed to make. This observation opens up a world of possibilities, and we look forward to future missions — such as the James Webb Space Telescope — to follow up on this exciting discovery.”

Other team members include Britney Schmidt, an assistant professor at the School of Earth and Atmospheric Sciences at Georgia Institute of Technology in Atlanta; and Jennifer Wiseman, senior Hubble project scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.

Their work will be published in the Sept. 29 issue of the Astrophysical Journal. And be sure to enjoy this video by NASA about this exciting find:

https://youtu.be/4QJS9LcB66g

Further Reading: NASA Live

The post Europa’s Venting Global Ocean May Be Easier To Reach Than We Thought appeared first on Universe Today.

Hubble’s Surprising Find On Europa To Be Announced By NASA Monday

Europa as imaged by the Galileo spacecraft. Europa is a prime target in the search for life because of its sub-surface ocean. Image: NASA/JPL-Caltech/SETI Institute

NASA will make a “surprising” announcement about Jupiter’s moon Europa on Monday, Sept. 26th, at 2:00 PM EDT. They haven’t said much, other than there is “surprising evidence of activity that may be related to the presence of a subsurface ocean on Europa.” Europa is a prime target for the search for life because of its subsurface ocean.

The new evidence is from a “unique Europa observing campaign” aimed at the icy moon. The Hubble Space Telescope captured the images in these new findings, so maybe we’ll be treated to some more of the beautiful images that we’re accustomed to seeing from the Hubble.

We always welcome beautiful images, of course. But the real interest in Europa lies in its suitability for harboring life. Europa has a frozen surface, but underneath that ice there is probably an ocean. The frozen surface is thought to be about 10 – 30 km thick, and the ocean may be about 100 km (62 miles) thick. That’s a lot of water, perhaps double what Earth has, and that water is probably salty.

[embed]https://www.youtube.com/watch?v=pEuCdnxP_V8[/embed]

Back in 2012, the Hubble captured evidence of plumes of water vapor escaping from Europa’s south pole. Hubble didn’t directly image the water vapor, but it “spectroscopically detected auroral emissions from oxygen and hydrogen” according to a NASA news release at the time.

There are other lines of evidence that support the existence of a sub-surface ocean on Europa. But there are a lot of questions. Will the frozen top layer be several tens of kilometres thick, or only a few hundred meters thick? Will the sub-surface ocean be warm, liquid water? Or will it be frozen too, but warmer than the surface ice and still convective?

Hopefully, new evidence from the Hubble will answer these questions definitively. Stay tuned to Monday’s teleconference to find out what NASA has to tell us.

These are the scientists who will be involved in the teleconference:

  • Paul Hertz, director of the Astrophysics Division at NASA Headquarters in Washington
  • William Sparks, astronomer with the Space Telescope Science Institute in Baltimore
  • Britney Schmidt, assistant professor at the School of Earth and Atmospheric Sciences at Georgia Institute of Technology in Atlanta
  • Jennifer Wiseman, senior Hubble project scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland

The NASA website will stream audio from the teleconference.

More About Europa:

The post Hubble’s Surprising Find On Europa To Be Announced By NASA Monday appeared first on Universe Today.

Uranus & Neptune May Keep “Hitler’s Acid” Stable Under Massive Pressure

Uranus and Neptune, the Solar System’s ice giant planets. Credit: Wikipedia Commons

“Hitler’s acid” is a colloquial name used to refer to Orthocarbonic acid – a name which was inspired from the fact that the molecule’s appearance resembles a swastika. As chemical compounds go, it is quite exotic, and chemists are still not sure how to create it under laboratory conditions.

But it just so happens that this acid could exist in the interiors of planets like Uranus and Neptune. According to a recent study from a team of Russian chemists, the conditions inside Uranus and Neptune could be ideal for creating exotic molecular and polymeric compounds, and keeping them under stable conditions.

The study was produced by researchers from the Moscow Institute of Physics and Technology (MIPT) and the Skolkovo Institute of Science and Technology (Skoltech). Titled “Novel Stable Compounds in the C-H-O Ternary System at High Pressure”, the paper describes how the high pressure environments inside planets could create compounds that exist nowhere else in the Solar System.

Professor Artem Oganov – a professor at Skoltech and the head of MIPT’s Computational Materials Discovery Lab – is the study’s lead author. Years back, he and a team of researchers developed the worlds most powerful algorithm for predicting the formation of crystal structures and chemical compounds under extreme conditions.

Known as the Universal Structure Predictor: Evolutionary Xtallography (UPSEX), scientists have since used this algorithm to predict the existence of substances that are considered impossible in classical chemistry, but which could exist where pressures and temperatures are high enough – i.e. the interior of a planet.

With the help of Gabriele Saleh, a postdoc member of MIPT and the co-author of the paper, the two decided to use the algorithm to study how the carbon-hydrogen-oxygen system would behave under high pressure. These elements are plentiful in our Solar System, and are the basis of organic chemistry.

Until now, it has not been clear how these elements behave when subjected to extremes of temperature and pressure. What they found was that under these types of extreme conditions, which are the norm inside gas giants, these elements form some truly exotic compounds.

As Prof. Oganov explained in a MIPT press release:

“The smaller gas giants – Uranus and Neptune – consist largely of carbon, hydrogen and oxygen. We have found that at a pressure of several million atmospheres unexpected compounds should form in their interiors. The cores of these planets may largely consist of these exotic materials.”

Under normal pressure – i.e. what we experience here on Earth (100 kPa) – any carbon, hydrogen or oxygen compounds (with the exception of methane, water and CO²) are unstable. But at pressures in the range 1 to 400 GPa (10,000 to 4 million times Earth normal), they become stable enough to form several new substances.

These include carbonic  acid, orthocarbonic acid (Hitler’s acid) and other rare compounds. This was a very unusual find, considering that these chemicals are unstable under normal pressure conditions. In carbonic acid’s case, it can only remain stable when kept at very low temperatures in a vacuum.

At pressures of 314 GPa, they determined that carbonic acid (H²CO³) would react with water to form orthocarbonic acid (H4CO4). This acid is also extremely unstable, and so far, scientists have not yet been able to produce it in a laboratory environment.

This research is of considerable importance when it comes to modelling the interior of planets like Uranus and Neptune. Like all gas giants, the structure and composition of their interiors have remained the subject of speculation due to their inaccessible nature. But it could also have implications in the search for life beyond Earth.

According to Oganov and Saleh, the interiors of many moons that orbit gas giants (like Europa, Ganymede and Enceladus) also experience these types of pressure conditions. Knowing that these kinds of exotic compounds could exist in their interiors is likely to change what scientist’s think is going on under their icy surfaces.

“It was previously thought that the oceans in these satellites are in direct contact with the rocky core and a chemical reaction took place between them,” said Oganov. “Our study shows that the core should be ‘wrapped’ in a layer of crystallized carbonic acid, which means that a reaction between the core and the ocean would be impossible.”

For some time, scientists have understood that at high temperatures and pressures, the properties of matter change pretty drastically. And while here on Earth, atmospheric pressure and temperatures are quite stable (just the way we like them!), the situation in the outer Solar System is much different.

By modelling what can occur under these conditions, and knowing what chemical buildings blocks are involved, we could be able to determine with a fair degree of confidence what the interior’s of inaccessible bodies are like. This will give us something to work with when the day comes (hopefully soon) that we can investigate them directly.

Who knows? In the coming years, a mission to Europa may find that the core-mantle boundary is not a habitable environment after all. Rather than a watery environment kept warm by hydrothermal activity, it might instead by a thick layer of chemical soup.

Then again, we may find that the interaction of these chemicals with geothermal energy could produce organic life that is even more exotic!

Further Reading: MIPT, Nature Scientific Reports

The post Uranus & Neptune May Keep “Hitler’s Acid” Stable Under Massive Pressure appeared first on Universe Today.

Europa Clipper Team Braces For Bad News

An artist's concept of the Europa mission. The multi-year mission would conduct fly-bys of Europa designed to protect it from the extreme environment there. Image: NASA/JPL-Caltech

Jupiter’s moon Europa is a juicy target for exploration. Beneath its surface of ice there’s a warm salty, ocean. Or potentially, at least. And if Earth is our guide, wherever you find a warm, salty, ocean, you find life. But finding it requires a dedicated, and unique, mission.

If each of the bodies in our Solar System weren’t so different from each other, we could just have one or two types of missions. Things would be much easier, but also much more boring. But Europa isn’t boring, and it won’t be easy to explore. Exploring it will require a complex, custom mission. That means expensive.

NASA’s proposed mission to Europa is called the Europa Clipper. It’s been in the works for a few years now. But as the mission takes shape, and as the science gets worked out, a parallel process of budget wrangling is also ongoing. And as reported by SpaceNews.com there could be bad news incoming for the first-ever mission to Europa.

At issue is next year’s funding for the Europa Clipper. Officials with NASA’s Outer Planets Assessment Group are looking for ways to economize and cut costs for Fiscal Year (FY) 2017, while still staying on track for a mission launch in 2022.

According to Bob Pappalardo, Europa Clipper’s project scientist at the Jet Propulsion Laboratory, funding will be squeezed in 2017. “There is this squeeze in FY17 that we have,” said Pappalardo. “We’re asking the instrument teams and various other aspects of the project, given that squeeze, what will it take in the out years to maintain that ’22 launch.”

As for the actual dollar amounts, there are different numbers floating around, and they don’t all jive with each other. In 2016, the Europa Mission received $175 million from Congress, but in the administration’s budget proposal for 2017, they only requested $49.6 million.

There’s clearly some uncertainty in these numbers, and that uncertainty is reflected in Congress, too. An FY 2017 House bill earmarks $260 million for the Europa mission. And the Senate has crafted a bill in support of the mission, but doesn’t allocate any funding for it. Neither the Senate nor the Congress has passed their bills.

This is not the first time that a mis-alignment has appeared between NASA and the different levels of government when it comes to funding. It’s pretty common. It’s also pretty common for the higher level of funding to prevail. But it’s odd that NASA’s requested amount is so low. NASA’s own low figure of $49.6 million is fuelling the perception that they themselves are losing interest in the Europa Clipper.

But SpaceNews.com is reporting that that is not the case. According to Curt Niebur, NASA’s program scientist for the Europa mission, “Everyone is aware of how supportive and generous Congress has been of this mission, and I’m happy to say that that support and encouragement is now shared by the administration, and by NASA as well. Everybody is on board the Europa Clipper and getting this mission to the launch pad as soon as our technical challenges and our budget will allow.”

[embed]https://www.youtube.com/watch?v=pEuCdnxP_V8[/embed]

What all this seems to mean is that the initial science and instrumentation for the mission will be maintained, but no additional capacity will be added. NASA is no longer considering things like free-flying probes to measure the plumes of water ice coming off the moon. According to Niebur, “The additional science value provided by these additions was not commensurate with the associated impact to resources, to accommodation, to cost. There just wasn’t enough science there to balance that out.”

The Europa Clipper will be a direct shot to Europa, without any gravity assist on the way. It will likely be powered by the Space Launch System. The main goal of the mission is to learn more about the icy moon’s potential habitability. There are tantalizing clues that it has an ocean about 100 km thick, kept warm by the gravity-tidal interactions with Jupiter, and possibly by radioactive decay in the rocky mantle. There’s also some evidence that the composition of the sub-surface ocean is similar to Earth’s.

Mars is a fascinating target, no doubt about it. But as far as harbouring life, Europa might be a better bet. Europa’s warm, salty ocean versus Mar’s dry, cold surface? A lot of resources have been spent studying Mars, and the Europa mission represents a shift in resources in that regard.

It’s unfortunate that a few tens of million dollars here or there can hamper our search for life beyond Earth. But the USA is a democracy, so that’s the way it is. These discrepancies and possible disputes between NASA and the different levels of government may seem disconcerting, but that’s the way these things get done.

At least we hope it is.

Sources: SpaceNews.com

Europa on Universe Today:

SpaceNews.com

The post Europa Clipper Team Braces For Bad News appeared first on Universe Today.

Juno Transmits 1st Orbital Imagery after Swooping Arrival Over Jovian Cloud Tops and Powering Up

This color view from NASA's Juno spacecraft is made from some of the first images taken by JunoCam after the spacecraft entered orbit around Jupiter on July 4, 2016.  Credits: NASA/JPL-Caltech/SwRI/MSSS

NASA’s newly arrived Jovian orbiter Juno has transmitted its first imagery since reaching orbit last week on July 4 after swooping over Jupiter’s cloud tops and powering back up its package of state-of-the-art science instruments for unprecedented research into determining the origin of our solar systems biggest planet.

The breathtaking image clearly shows the well known banded cloud tops in Jupiter’s atmosphere as well as the famous Great Red Spot and three of the humongous planet’s four largest moons — Io, Europa and Ganymede.

The ‘Galilean’ moons are annotated from left to right in the lead image.

Juno’s visible-light camera named JunoCam was turned on six days after Juno fired its main engine to slow down and be captured into orbit around Jupiter – the ‘King of the Planets’ following a nearly five year long interplanetary voyage from Earth.

The image was taken when Juno was 2.7 million miles (4.3 million kilometers) distant from Jupiter on July 10, at 10:30 a.m. PDT (1:30 p.m. EDT, 5:30 UTC), and traveling on the outbound leg of its initial 53.5-day capture orbit.

Juno came within only about 3000 miles of the cloud tops and passed through Jupiter’s extremely intense and hazardous radiation belts during orbital arrival over the north pole.

The newly released JunoCam image is visible proof that Juno survived the do-or-die orbital fireworks on America’s Independence Day that placed the baskeball-court sized probe into orbit around Jupiter and is in excellent health to carry out its groundbreaking mission to elucidate Jupiter’s ‘Genesis.’

“This scene from JunoCam indicates it survived its first pass through Jupiter’s extreme radiation environment without any degradation and is ready to take on Jupiter,” said Scott Bolton, principal investigator from the Southwest Research Institute in San Antonio, in a statement.

“We can’t wait to see the first view of Jupiter’s poles.”

Within two days of the nerve wracking and fully automated 35-minute-long Jupiter Orbital Insertion (JOI) maneuver, the Juno engineering team begun powering up five of the probes science instruments on July 6.

All nonessential instruments and systems had been powered down in the final days of Juno’s approach to Jupiter to ensure the maximum chances for success of the critical JOI engine firing.

“We had to turn all our beautiful instruments off to help ensure a successful Jupiter orbit insertion on July 4,” said Bolton.

“But next time around we will have our eyes and ears open. You can expect us to release some information about our findings around September 1.”

Juno resumed high data rate communications with Earth on July 5, the day after achieving orbit.

We can expect to see more JunoCam images taken during this first orbital path around the massive planet.

But the first high resolution images are still weeks away and will not be available until late August on the inbound leg when the spacecraft returns and swoops barely above the clouds.

“JunoCam will continue to take images as we go around in this first orbit,” said Candy Hansen, Juno co-investigator from the Planetary Science Institute, Tucson, Arizona, in a statement.

“The first high-resolution images of the planet will be taken on August 27 when Juno makes its next close pass to Jupiter.”

All of JunoCams images will be released to the public.

During a 20 month long science mission – entailing 37 orbits lasting 14 days each – the probe will plunge to within about 2,600 miles (4,100 kilometers) of the turbulent cloud tops.

It will collect unparalleled new data that will unveil the hidden inner secrets of Jupiter’s origin and evolution as it peers “beneath the obscuring cloud cover of Jupiter and study its auroras to learn more about the planet’s origins, structure, atmosphere and magnetosphere.”

The solar powered Juno spacecraft approached Jupiter over its north pole, affording an unprecedented perspective on the Jovian system – “which looks like a mini solar system” – as it flew through the giant planets intense radiation belts in ‘autopilot’ mode.

Juno is the first solar powered probe to explore Jupiter or any outer planet.

In the final weeks of the approach JunoCam captured dramatic views of the Jupiter all four of the Galilean Moons moons — Io, Europa, Ganymede and Callisto.

At the post JOI briefing on July 5, these were combined into a spectacular JunoCam time-lapse movie releaed by Bolton and NASA.

Watch and be mesmerized -“for humanity, our first real glimpse of celestial harmonic motion” says Bolton.

https://youtu.be/XpsQimYhNkA

Video caption: NASA’s Juno spacecraft captured a unique time-lapse movie of the Galilean satellites in motion about Jupiter. The movie begins on June 12th with Juno 10 million miles from Jupiter, and ends on June 29th, 3 million miles distant. The innermost moon is volcanic Io; next in line is the ice-crusted ocean world Europa, followed by massive Ganymede, and finally, heavily cratered Callisto. Galileo observed these moons to change position with respect to Jupiter over the course of a few nights. From this observation he realized that the moons were orbiting mighty Jupiter, a truth that forever changed humanity’s understanding of our place in the cosmos. Earth was not the center of the Universe. For the first time in history, we look upon these moons as they orbit Jupiter and share in Galileo’s revelation. This is the motion of nature’s harmony. Credits: NASA/JPL-Caltech/MSSS

The $1.1 Billion Juno was launched on Aug. 5, 2011 from Cape Canaveral, Florida atop the most powerful version of the Atlas V rocket augmented by 5 solid rocket boosters and built by United Launch Alliance (ULA). That same Atlas V 551 version just launched MUOS-5 for the US Navy on June 24.

The Juno spacecraft was built by prime contractor Lockheed Martin in Denver.

The last NASA spacecraft to orbit Jupiter was Galileo in 1995. It explored the Jovian system until 2003.

From Earth’s perspective, Jupiter was in conjunction with Earth’s Moon shortly after JOI during the first week in July. Personally its thrilling to realize that an emissary from Earth is once again orbiting Jupiter after a 13 year long hiatus as seen in the authors image below – coincidentally taken the same day as JunoCam’s first image from orbit.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

The post Juno Transmits 1st Orbital Imagery after Swooping Arrival Over Jovian Cloud Tops and Powering Up appeared first on Universe Today.

7 Days Out From Orbital Insertion, NASA’s Juno Images Jupiter and its Largest Moons

This annotated color view of Jupiter and its four largest moons -- Io, Europa, Ganymede and Callisto -- was taken by the JunoCam camera on NASA's Juno spacecraft on June 21, 2016, at a distance of 6.8 million miles (10.9 million kilometers) from Jupiter. Image credit: NASA/JPL-Caltech/MSSS

Now just 7 days out from a critical orbital insertion burn, NASA’s Jupiter-bound Juno orbiter is closing in fast on the massive gas giant. And as its coming into focus the spacecraft has begun snapping a series of beautiful images of the biggest planet and its biggest moons.

In a newly released color image snapped by the probes educational public outreach camera named Junocam, banded Jupiter dominates a spectacular scene that includes the giant planet’s four largest moons — Io, Europa, Ganymede and Callisto.

Junocam’s image of the approaching Jovian system was taken on June 21, 2016, at a distance of 6.8 million miles (10.9 million kilometers) and hints at the multitude of photos and science riches to come from Juno.

“Juno on Jupiter’s Doorstep,” says a NASA description. “And the alternating light and dark bands of the planet’s clouds are just beginning to come into view,” revealing its “distinctive swirling bands of orange, brown and white.”

Rather appropriately for an American space endeavor, the entire mission depends on do or die ‘Independence Day’ fireworks.

On the evening of July 4, Juno must fire its main engine for 35 minutes. The Joy of JOI – or Jupiter Orbit Insertion, will place NASA’s robotic explorer into a polar orbit around the gas giant.

The approach over the north pole is unlike earlier probes that approached from much lower latitudes nearer the equatorial zone, and thus provide a perspective unlike any other.

After a five-year and 2.8 Billion kilometer (1.7 Billion mile) outbound trek to the Jovian system and the largest planet in our solar system and an Earth flyby speed boost, the moment of truth for Juno is now at hand.

And preparations are in full swing by the science and engineering team to ensure a spectacular Fourth of July fireworks display.

The team has been in contact with Juno 24/7 since June 11 and already uplinked the rocket firing parameters.

Signals traveling at the speed of light take 10 minutes to reach Earth.

The protective cover that shields Juno’s main engine from micrometeorites and interstellar dust was opened on June 20.

“And the software program that will command the spacecraft through the all-important rocket burn was uplinked,” says NASA.

The pressurization of the propulsion system is set for June 28.

“We have over five years of spaceflight experience and only 10 days to Jupiter orbit insertion,” said Rick Nybakken, Juno project manager from NASA’s Jet Propulsion Laboratory in Pasadena, California, said in a statement.

“It is a great feeling to put all the interplanetary space in the rearview mirror and have the biggest planet in the solar system in our windshield.”

On the night of orbital insertion, Juno will fly within 2,900 miles (4,667 kilometers) of the Jovian cloud tops.

All instruments except those critical for the JOI insertion burn on July 4, will be tuned off on June 29. That includes shutting down Junocam.

“If it doesn’t help us get into orbit, it is shut down,” said Scott Bolton, Juno’s principal investigator from the Southwest Research Institute in San Antonio.

“That is how critical this rocket burn is. And while we will not be getting images as we make our final approach to the planet, we have some interesting pictures of what Jupiter and its moons look like from five-plus million miles away.”

During a 20 month long science mission – entailing 37 orbits lasting 11 days each – the probe will plunge to within about 3000 miles of the turbulent cloud tops and collect unprecedented new data that will unveil the hidden inner secrets of Jupiter’s origin and evolution.

“Jupiter is the Rosetta Stone of our solar system,” says Bolton. “It is by far the oldest planet, contains more material than all the other planets, asteroids and comets combined and carries deep inside it the story of not only the solar system but of us. Juno is going there as our emissary — to interpret what Jupiter has to say.”

Junocam has already taken some striking images during the Earth flyby gravity assist speed boost on Oct. 9, 2013.

For example the dazzling portrait of our Home Planet high over the South American coastline and the Atlantic Ocean.

For a hint of what’s to come, see our colorized Junocam mosaic of land, sea and swirling clouds, created by Ken Kremer and Marco Di Lorenzo.

As Juno sped over Argentina, South America and the South Atlantic Ocean it came within 347 miles (560 kilometers) of Earth’s surface.

During the flyby, the science team observed Earth using most of Juno’s nine science instruments since the slingshot also serves as an important dress rehearsal and key test of the spacecraft’s instruments, systems and flight operations teams.

The $1.1 Billion Juno was launched on Aug. 5, 2011 from Cape Canaveral, Florida atop the most powerful version of the Atlas V rocket augmented by 5 solid rocket boosters and built by United Launch Alliance (ULA).

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.
Ken Kremer

The post 7 Days Out From Orbital Insertion, NASA’s Juno Images Jupiter and its Largest Moons appeared first on Universe Today.

Weekly Space Hangout – May 27, 2016: Dr. Seth Shostak

Host: Fraser Cain (@fcain) Special Guest: Dr. Seth Shostak is the Senior Astronomer at the SETI Institute. He also heads up the International Academy of Astronautics’ SETI Permanent Committee. In addition, Seth is keen on outreach activities: interesting the public – and especially young people – in science in general, and astrobiology in particular. He’s […]

The post Weekly Space Hangout – May 27, 2016: Dr. Seth Shostak appeared first on Universe Today.

Friendly Giants Have Cozy Habitable Zones Too

Artist's impression of a red giant star. Credit:NASA/ Walt Feimer

It is an well-known fact that all stars have a lifespan. This begins with their formation, then continues through their Main Sequence phase (which constitutes the majority of their life) before ending in death. In most cases, stars will swell up to several hundred times their normal size as they exit the Main Sequence phase of their life, during which time they will likely consume any planets that orbit closely to them.

However, for planets that orbit the star at greater distances (beyond the system’s “Frost Line“, essentially), conditions might actually become warm enough for them to support life. And according to new research which comes from the Carl Sagan Institute at Cornell University, this situation could last for some star systems into the billions of years, giving rise to entirely new forms of extra-terrestrial life!

In approximately 5.4 billion years from now, our Sun will exit its Main Sequence phase. Having exhausted the hydrogen fuel in its core, the inert helium ash that has built up there will become unstable and collapse under its own weight. This will cause the core to heat up and get denser, which in turn will cause the Sun to grow in size and enter what is known as the Red Giant-Branch (RGB) phase of its evolution.

This period will begin with our Sun becoming a subgiant, in which it will slowly double in size over the course of about half a billion years. It will then spend the next half a billion years expanding more rapidly, until it is 200 times its current size and several thousands times more luminous. It will then officially be a red giant star, where it will measure approximately 2 AU in diameter, thus reaching beyond Mars’ current orbit.

As we explored in a previous article, planet Earth will not survive our Sun becoming a Red Giant – nor will Mercury, Venus or Mars. But beyond the “Frost Line”, where it is cold enough that volatile compounds – such as water, ammonia, methane, carbon dioxide and carbon monoxide – remain in a frozen state, the remain gas giants, ice giants, and dwarf planets will survive. Not only that, but a massive thaw will set in.

In short, when the star expands, its “habitable zone” will likely do the same, encompassing the orbits of Jupiter and Saturn. When this happens, formerly uninhabitable places – like the Jovian and Cronian moons – could suddenly become inhabitable. The same holds true for many other stars in the Universe, all of which are fated to become Red Giants as they near the end of their lifespans.

However, when our Sun reaches its Red Giant Branch phase, it is only expected to have 120 million years of active life left. This is not quite enough time for new lifeforms to emerge, evolve and become truly complex (i.e. like humans and other species of mammals). But according to a recent research study that appeared in The Astrophysical Journal – titled “Habitable Zone of Post-Main Sequence Stars” – some planets may be able to remain habitable around other red giant stars in our Universe for much longer – up to 9 billion years or more in some cases!

To put that in perspective, nine billion years is close to twice the current age of Earth. So assuming that the worlds in question also have the right mix of elements, they will have ample time to give rise to new and complex forms of life. The study’s lead author, Professor Lisa Kaltennegeris, is also the director of the Carl Sagan Institute. As such, she is no stranger to searching for life in other parts of the Universe. As she explained in a Cornell University press release, which coincided with the publication of the study:

“When a star ages and brightens, the habitable zone moves outward and you’re basically giving a second wind to a planetary system. Currently objects in these outer regions are frozen in our own solar system, like Europa and Enceladus – moons orbiting Jupiter and Saturn… Long after our own plain yellow sun expands to become a red giant star and turns Earth into a sizzling hot wasteland, there are still regions in our solar system – and other solar systems as well – where life might thrive.”

Using existing models of stars and their evolution – i.e. one-dimensional radiative-convective climate and stellar evolutionary models – for their study, Kaltenegger and Ramirez were able to calculate the distances of the habitable zones (HZ) around a series of post-Main Sequence (post-MS) stars. Ramses M. Ramirez – a research associate at the Carl Sagan Institute and co-author of the paper – explained the research process to Universe Today via email:

“We used stellar evolutionary models that tell us how stellar quantities, mainly the brightness, radius, and temperature all change with time as the star ages through the red giant phase. We also used a  climate model to then compute how much energy each star is outputting at the boundaries of the habitable zone. Knowing this and the stellar brightness mentioned above, we can compute the distances to these habitable zone boundaries.”

At the same time, they considered how this kind of stellar evolution could effect the atmosphere of the star’s planets. As a star expands, it loses mass and ejects it outward in the form of solar wind. For planets that orbit close to a star, or those that have low surface gravity, they may find some or all of their atmospheres blasted away. On the other hand, planets with sufficient mass (or positioned at a safe distance) could maintain most of their atmospheres.

“The stellar winds from this mass loss erodes planetary atmospheres, which we also compute as a function of time,” said Ramirez. “As the star loses mass, the solar system conserves angular momentum by moving outwards. So, we also take into account how the orbits move out with time.” By using models that incorporated the rate of stellar and atmospheric loss during the Red Giant Branch (RGB) and Asymptotic Giant Branch (AGB) phases of star, they were able to determine how this would play out for planets that ranged in size from super-Moons to super-Earths.

What they found was that a planet can stay in a post-HS HZ for eons or more, depending on how hot the star is, and figuring for metallicities that are similar to our Sun’s. As Ramirez explained:

“The main result is that the maximum time that a planet can remain in this red giant habitable zone of hot stars is 200 million years. For our coolest star (M1), the maximum time a planet can stay within this red giant habitable zone is 9 billion years. Those results assume metallicity levels similar to those of our Sun. A star with a higher percentage of metals takes longer to fuse the non-metals (H, He..etc) and so these maximum times can increase some more, up to about a factor of two.”

Within the context of our Solar System, this could mean that in a few billion years, worlds like Europa and Enceladus (which are already suspected of having life beneath their icy surfaces) might get a shot at becoming full-fledged habitable worlds. As Ramirez summarized beautifully:

“This means that the post-main-sequence is another potentially interesting phase of stellar evolution from a habitability standpoint. Long after the inner system of planets have been turned into sizzling wastelands by the expanding, growing red giant star, there could be potentially habitable abodes farther away from the chaos. If they are frozen worlds, like Europa, the ice would melt, potentially unveiling any preexisting life. Such pre-existing life may be detectable by future missions/telescopes looking for atmospheric biosignatures.”

But perhaps the most exciting take-away from their research study was their conclusion that planets orbiting within their star’s post-MS habitable zones would be doing so at distances that would make them detectable using direct imaging techniques. So not only are the odds of finding life around older stars better than previously thought, we should have no trouble in spotting them using current exoplanet-hunting techniques!

It is also worth noting that Kaltenegger and Dr. Ramirez have submitted a second paper for publication, in which they provide a list of 23 red giant stars within 100 light-years of Earth. Knowing that these stars, all of which are in our stellar neighborhood, could have life-sustaining worlds within their habitable zones should provide additional opportunities for planet hunters in the coming years.

And be sure to check out this video from Cornellcast, where Prof. Kaltenegger shares what inspires her scientific curiosity and how Cornell’s scientists are working to find proof of extra-terrestrial life.

https://youtu.be/GnnTVjgSuEs

Further Reading: The Astrophysical Journal

The post Friendly Giants Have Cozy Habitable Zones Too appeared first on Universe Today.

How Do We Terraform Jupiter’s Moons?

Surface features of the four members at different levels of zoom in each row

Fans of Arthur C. Clarke may recall how in his novel, 2010: Odyssey Two (or the movie adaptation called 2010: The Year We Make Contact), an alien species turned Jupiter into a new star. In so doing, Jupiter’s moon Europa was permanently terraformed, as its icy surface melted, an atmosphere formed, and all the life living in the moon’s oceans began to emerge and thrive on the surface.

As we explained in a previous video (“Could Jupiter Become a Star“) turning Jupiter into a star is not exactly doable (not yet, anyway). However, there are several proposals on how we could go about transforming some of Jupiter’s moons in order to make them habitable by human beings. In short, it is possible that humans could terraform one of more of the Jovians to make it suitable for full-scale human settlement someday.

The Jovian Moons:

Within the Jupiter system, there are 67 confirmed moons of varying size, shape and composition. In honor of Jupiter’s namesake, they are sometimes collectively referred to as the Jovians. Of these, the four largest – Io, Europa, Ganymede and Callisto – are known as the Galileans (in honor of their founder, Galileo Galilei). These four moons are among the largest in the Solar System, with Ganymede being the largest of them all, and even larger than the planet Mercury.

In addition, three of these moons – Europa, Ganymede and Callisto – are all believed or known to have interior oceans at or near their core-mantle boundary. The presence of warm water oceans is not only considered an indication of potential life on these moons, but is also cited as a reason for possible human habitation.

https://youtu.be/ZErO1MCTj_k

Of the Galilean Moons, Io, Europa and Ganymede are all in orbital resonance with each other. Io has a 2:1 mean-motion orbital resonance with Europa and a 4:1 resonance with Ganymede, which means that it completes two orbits of Jupiter for every one orbit of Europa, and four orbits for every orbit Ganymede. This resonance helps maintain these moons’ orbital eccentricities, which in turn triggers tidal flexing their interiors.

Naturally, each moon presents its own share of advantages and disadvantages when it comes to exploration, settlement, and terraforming. Ultimately, these come down to the particular moon’s structure and composition, its proximity to Jupiter, the availability of water, and whether or not the moon in question is dominated by Jupiter’s powerful magnetic field.

Possible Methods:

The process of converting Jupiter’s Galilean moons is really quite simple. Basically, its all about leveraging the indigenous resources and the moons’ own interactions with Jupiter’s magnetic field to create a breathable atmosphere. The process would begin by heating the surface in order to sublimate the ice, a process which could involve orbital mirrors to focus sunlight onto the surface, nuclear detonators, or crashing comets/meteors into the surface.

Once the surface ice begins to melt, it would form dense clouds of water vapor and gaseous volatiles (such as carbon dioxide, methane and ammonia). These would in turn create a greenhouse effect, warming the surface even more, and triggering a process known as radiolysis (the dissociation of molecules through exposure to nuclear radiation).

Basically, the exposure of water vapor to Jupiter’s radiation would result in the creation of hydrogen and oxygen gas, the former of which would escape into space while the latter remained closer to the surface. This process already takes place around Europa, Ganymede and Callisto, and is responsible for their tenuous atmospheres (which contain oxygen gas).

And since ammonia is predominantly composed of nitrogen, it could be converted into nitrogen gas (N²) through the introduction of certain strains of bacteria. These would include members of the Nitrosomonas, Pseudomonas and Clostridium species, which would convert ammonia gas into nitrites (NO²-), and then nitrites into nitrogen gas. With nitrogen acting as a buffer gas, a nitrogen-oxygen atmosphere with sufficient air pressure to sustain humans could be created.

Another option falls under the heading of “paraterraforming” – a process where a world is enclosed (in whole or in part) in an artificial shell in order to transform its environment. In the case of the Jovians, this would involve building large “Shell Worlds” to encase them, keeping the atmospheres inside long enough to effect long-term changes.

Within this shell, Europa, Ganymede and Callisto could have their temperatures slowly raised, the water-vapor atmospheres could be exposed to ultra-violet radiation from internal UV lights, bacteria could then be introduced, and other elements added as needed. Such a shell would ensure that the process of creating of an atmosphere could be carefully controlled and none would be lost before the process was complete.

Io:

With a mean radius of 1821.6 ± 0.5 km, and an average distance (semi-major axis) of 421,700 km from Jupiter, Io is the innermost of the Galileans. Because of this, Io is completely enveloped by Jupiter’s powerful magnetic field, which also the surface is exposed to significant amounts of harmful radiation. In fact, Io receives an estimated 3,600 rem (36 Sv) of ionizing radiation per day, whereas living organisms here on Earth experience an average of 24 rem per year!

The moon has the shortest orbital period of any of the Galileans, taking roughly 42.5 hours to complete a single orbit around the gas giant. The moon’s 2:1 and 4:1 orbital resonance with Europa and Ganymede (see below) also contributes to its orbital eccentricity of 0.0041, which is the primary reason for Io’s geologic activity.

With a mean density of 3.528 ± 0.006 g/cm3, Io has the highest density of any moon in the Solar System, and is significantly denser than the other Galilean Moons. Composed primarily of silicate rock and iron, it is closer in bulk composition to the terrestrial planets than to other satellites in the outer Solar System, which are mostly composed of a mix of water ice and silicates.

Unlike its Jovian cousins, Io has no warm-water ocean beneath its surface. In fact, based on magnetic measurements and heat-flow observations, a magma ocean is believed to exist some 50 km below the surface, which itself is about 50 km thick and makes up 10% of the mantle.  It is estimated that the temperature in the magma ocean reaches 1473 K (1200 °C/2192 °F).

The main source of internal heat that allows for this comes from tidal flexing, which is the result of Io’s orbital resonance with Europa and Ganymede. The friction or dissipation produced in Io’s interior due to this varying tidal pull creates significant tidal heating within Io’s interior, melting a significant amount of Io’s mantle and core.

https://youtu.be/08X9tET-d2k

This heat is also responsible for Io’s volcanic activity and its observed heat flow, and periodically causes lava to erupt up to 500 km (300 mi) into space. Consistently, the surface of is covered in smooth plains dotted with tall mountains, pits of various shapes and sizes, and volcanic lava flows. It’s colorful appearance (a combination of orange, yellow, green, white/grey, etc.) is also indicative of volcanic activity which has covered the surface in sulfuric and silicate compounds and leads to surface renewal.

Io contains little to no water, though small pockets of water ice or hydrated minerals have been tentatively identified, most notably on the northwest flank of the mountain Gish Bar Mons. In fact, Io has the least amount of water of any known body in the Solar System, which is likely due to Jupiter being hot enough early in the evolution of the Solar System to drive volatile materials like water off its surface.

Taken together, all of this adds up to Io being a total non-starter when it comes to terraforming or settlement. The planet is far too hostile, far too dry, and far too volcanically active to ever be turned into something habitable!

Europa:

Europa, by contrast, has a lot of appeal for proponents of terraforming. If Io could be characterized as hellish, lava-spewing place (and it certainly can!), then Europa would be calm, icy and watery by comparison. With a mean radius of about 1560 km and a mass of 4.7998 ×1022 kg, Europa is also slightly smaller than Earth’s Moon, which makes it the sixth-largest moon and fifteenth largest object in the Solar System.

https://youtu.be/m25i1edwiKs

It’s orbit is nearly circular, with a eccentricity of 0.09, and lies at an average distance of 670 900 km from Jupiter. The moon takes 3.55 Earth days to complete a single orbit around Jupiter, and is tidally locked with the planet (though some theories say that this may not be absolute). At this distance from Jupiter, Europa still experiences quite a bit of radiation, averaging about 540 rem per day.

Europa is significantly more dense than the other Galilean Moons (except for Io), which indicates that its interior is differentiated between a rock interior composed of silicate rock and a possible iron core. Above this rocky interior is layer of water ice that is estimated to be around 100 km (62 mi) thick, likely differentiated between a frozen upper crust and  a liquid water ocean beneath.

If present, this ocean is likely a warm-water, salty ocean that contains organic molecules, is oxygenated, and heated by Europa’s geologically-active core. Given the combination of these factors, it is considered a strong possibility that organic life also exists in this ocean, possibly in microbial or even multi-celled form, most likely in environments similar to Earth’s deep-ocean hydrothermal vents.

Because of its abundant water, which comes in both liquid and solid form, Europa is a popular candidate for proponents of colonization and terraforming. Using nuclear devices, cometary impacts, or some other means to increase the surface temperature, Europa’s surface ice could be sublimated and form a massive atmosphere of water vapor.

https://youtu.be/GqTaDCt_F1Y

This vapor would then undergo radiolysis due to exposure to Jupiter’s magnetic field, converting it into oxygen gas (which would stay close to the planet) and hydrogen that would escape into space. The resulting planet would be an ocean world, where floating settlements could be built that floated across the surface (due to oceans depths of ~100 km, they could not be anchored). Because Europa is tidally-locked, these colonies could move from the day-side to the night-side in order to create the illusion of a diurnal cycle.

Ganymede:

Ganymede’s is the third most distant moon from Jupiter, and orbits at an average distance (semi-major axis) of 1,070,400 km – varying from 1,069,200 km at periapsis to at 1,071,600 km apoapsis. At this distance, it takes seven days and three hours to completes a single revolution. Like most known moons, Ganymede is tidally locked, with one side always facing toward the planet.

With a mean radius of 2634.1 ± 0.3 kilometers (the equivalent of 0.413 Earths), Ganymede is the largest moon in the Solar System, even larger than the planet Mercury. However, with a mass of 1.4819 x 10²³ kg (the equivalent of 0.025 Earths), it is only half as massive, which is due to its composition, which consists of water ice and silicate rock.

Ganymede is considered another possible candidate for human settlement – and even terraforming – for several reasons. For one, as Jupiter’s largest moon, Ganymede has a gravitational force of 1.428 m/s2 (the equivalent of 0.146 g) which is comparable to Earth’s Moon. Sufficient enough to limit the effects of muscle and bone degeneration, this lower gravity also means that the moon has a lower escape velocity – which means it would take considerably less fuel for rockets to take off from the surface.

What’s more, the presence of a magnetosphere means that colonists would be better shielded from cosmic radiation than on other bodies, and more shielded from Jupiter’s radiation than Europa or Io. All told, Ganymede receives about 8 rem of radiation per day – a significant reduction from Europa and Io, but still well above human tolerances.

The prevalence of water ice means that colonists could also produce breathable oxygen, their own drinking water, and would be able to synthesize rocket fuel. Like Europa, this could be done by heating up the surface through various means, sublimating the water ice, and allowing radiolysis to convert it into oxygen. Again, the result would be an ocean world, but one with significantly deeper oceans (~800 km).

And then there is the distinct possibility that Ganymede, like Europa, has an interior ocean due to the heat created by tidal flexing in its mantle. This heat could be transferred into the water via hydrothermal vents, which could provide the necessary heat and energy to sustain life. Combined with oxygenated water, life forms could exist at the core-mantle boundary in the form of extremophiles, much like on Europa.

Callisto:

Callisto is the outermost of the Galileans, orbiting Jupiter at an average distance (semi-major axis) of 1,882,700 km. With a mean radius of 2410.3 ± 1.5 km (0.378 Earths) and a mass of 1.0759 × 1023 kg (0.018 Earths), Callisto is the second largest of  Jupiter’s moons (after Ganymede) and the third largest satellite in the solar system. It is similarly comparable in size to Mercury – being 99% as large – but due to its mixed composition, it has less than one-third of Mercury mass.

Compared to the other Galileans, Callisto presents numerous advantages as far as colonization is concerned. Much like the others, the moon has an abundant supply of water in the form of surface ice (but also possibly liquid water beneath the surface). But unlike the others, Callisto’s distance from Jupiter means that colonists would have far less to worry about in terms of radiation. In fact, with a surface exposure of about  0.01 rem a day, Callisto is well within human tolerances.

Much like Europa and Ganymede, and Saturn’s moons of Enceladus, Mimas, Dione, Titan, the possible existence of a subsurface ocean on Callisto has led many scientists to speculate about the possibility of life. This is particularly likely if the interior ocean is made up of salt-water, since halophiles (which thrive in high salt concentrations) could live there.

However, the environmental conditions necessary for life to appear (which include the presence of sufficient heat due to tidal flexing) are more likely on Europa and Ganymede. The main difference is the lack of contact between the rocky material and the interior ocean, as well as the lower heat flux in Callisto’s interior. In essence, while Callisto possesses the necessary pre-biotic chemistry to host life, it lacks the necessary energy.

Like Europa and Ganymede, the process of terraforming Callisto would involve heating up the surface in order to sublimate the surface ice and create an atmosphere, one which produces oxygen through radiolysis. The resulting world would be an ocean planet, but with oceans that reached to depths of between 130 and 350 km.

https://youtu.be/NGjK_UQbkLI

Potential Challenges:

Okay, we’ve covered the potential methods and targets, which means its time for the bad news. To break it down, converting one or more of the Galileans into something habitable to humans presents many difficulties, some of which may prove to be insurmountable. These include, but are are not limited to:

  1. Distance
  2. Resources/Infrastructure
  3. Natural Hazards
  4. Sustainability
  5. Ethical Considerations

Basically, the Jovian system is pretty far from Earth. On average, the distance between Jupiter and Earth is 628,411,977 million km (4.2 AU), roughly four times the distance between the Earth and the Sun. To put that into perspective, it took the Voyager probes between 18 months and two years to reach Jupiter from Earth. Ships designed to haul human passengers (with enough supplies and equipment to sustain them) would be much larger and heavier, which would make the travel time even longer.

In addition, depending on the method used, transforming the surfaces of Europa, Ganymede, and/or Callisto could require harvesting comets and iceteroids from the edge of the Solar System, which is significantly farther. To put that in perspective, it took the New Horizons mission over eight years to reach Pluto and the Kuiper Belt. And since any mission to this region of space would need to haul back several tons of icy cargo, the wait time involved would be on the order of decades.

Ergo, any vessels transporting human crews to the Jovian system would likely have to rely on cryogenics or hibernation-related technology in order to be smaller, faster and more cost-effective. While this sort of technology is being investigated for crewed missions to Mars, it is still very much in the research and development phase.

As for transport missions to and from the Kuiper Belt, these ships could be automated, but would have to come equipped with advanced propulsion systems in order to make the trips in a decent amount of time. This could take the form of Nuclear-Thermal Propulsion (NTP), Fusion-drive systems, or some other advanced concept. So far, no such drive systems exist, with some being decades or more away from feasibility.

An alternative to this last item could be to harvest asteroids from near Earth, the Asteroid Belt, or Jupiter’s Trojans. However, this brings up the second aspect of this challenge, which is the problem of infrastructure. In order to mount multiple crewed missions to the Jovian system, as well as asteroid/iceteroid retrieval missions, a considerable amount of infrastructure would be needed that either does not exist or is severely lacking.

This includes having lots of spaceships, which would also need advanced propulsion systems. Just as important is the need for refueling and supply stations between Earth and the Jovian System – like an outpost on the Moon, a permanent base on Mars, and bases on Ceres and in the Asteroid Belt. Harvesting resources from the Kuiper Belt would require more outposts between Jupiter and most likely Pluto.

Where “Shell Worlds” are concerned, the challenge remains the same. Building an enveloping structure big enough for an entire moon – which range from 3121.6 km to 5262.4 km in diameter – would require massive amounts of material. While these could be harvested from the nearby Asteroid Belt, it would require thousands of ships and robot workers to mine, haul, and assemble the minerals into large enough shells.

Third, radiation would be a significant issue for humans living on Europa or Ganymede. As noted already, Earth organisms are exposed to an average of 24 rem per year, which works out to 0.0657 rem per day. An exposure of approximately 75 rems over a period of a few days is enough to cause radiation poisoning, while about 500 rems over a few days would be fatal. Of all the Galileans, only Callisto falls beneath this terminal limit.

As a result, any settlements established on Europa or Ganymede would require radiation shielding, even after the creation of viable atmospheres. This in turn would require large shields to be built in orbit of the moons (requiring another massive investment in resources), or would dictate that all settlements built on the surfaces include heavy radiation shielding.

On top of that, as the surfaces of Europa, Ganymede and Callisto (especially Callisto!) will attest, the Jovian system is frequented by space rocks. In fact, most of Jupiter’s satellites are asteroids it picked up as they sailed through the system. These satellites are lost on a regular basis, and new ones are added all the time. So colonists would naturally have to worry about space rocks slamming into their ocean world, causing massive waves and blotting out the sky with thick clouds of water vapor.

Fourth, the issue of sustainability, has to do with the fact that all of the Jovian moons either do not have a magnetosphere or, in the case of Ganymede, are not powerful enough to block the effects of Jupiter’s magnetic field. Because of this, any atmosphere created would be slowly stripped away, much as Mars’ atmosphere was slowly stripped away after it lost its magnetosphere about 4.3 billion years ago. In order to maintain the effects of terraforming, colonists would need to replenish the atmosphere over time.

Another aspect of sustainability, one which is often overlooked, has to do with the kinds of planets that would result from terraforming. While estimates vary, transforming Europa, Ganymede and Callisto would result in oceans that varied in depth – from 100 km (in the cae of Europa) to extreme depths of up to 800 km (in the case of Ganymede). In contrast, the greatest depth ever measured here on Earth was only about 10 km (6 miles) deep, in the Pacific’s Mariana Trench.

With oceans this deep, all settlements would have to take the form of floating cities that could not be anchored to solid ground. And in the case of Ganymede, the oceans would account for a considerable portion of the planet. What the physicals effects of this would be are hard to imagine. But it is a safe bet that they would result in tremendously high tides (at best) to water being lost to space.

And finally, there is the issue of the ethics of terraforming. If, as scientists currently suspect, there is in fact indigenous life on one or more of the Jovian moons, then the effects of terraforming could have severe consequences or them. For instance, if bacterial life forms exist on the underside of Europa’s icy surface, then melting it would mean death for these organisms, since it would remove their only source of protection from radiation.

Life forms that exist close to the core-mantle boundary, most likely around hydrothermal vents, would be less effected by the presence of humans on the surface. However, any changes to the ec0logical balance could lead to a chain reaction that would destroy the natural life cycle. And the presence of organisms introduced by humans (i.e. germs), could have a similarly devastating effect.

So basically, if we choose to alter the natural environment of one or more of the Jovian moons, we will effectively be risking the annihilation of any indigenous life forms. Such an act would be tantamount to genocide (or xenocide, as the case may be), and exposure to alien organisms would surely pose health risks for human colonists as well.

Conclusions:

All in all, it appears that terraforming the outer Solar System might be a bit of a non-starter. While the prospect of doing it is certainly exciting, and presents many interesting opportunities, the challenges involved do seem to add up. For starters, it doesn’t seem likely or practical for us to contemplate doing this until we’ve established a presence on the Moon, Mars, and in the Asteroid Belt.

Second, terraforming any of Jupiter’s moons would involve a considerable amount of time, energy and resources. And given that a lot of these moon’s resources could be harvested for terraforming other worlds (such as Mars and Venus), would it not make sense to terraform these worlds first and circle back to the outer Solar System later?

Third, a terraformed Europa, Ganymede and Callisto would all be water worlds with extremely deep oceans. Would it even be possible to build floating cities on such a world? Or would they be swallowed up by massive tidal waves; or worse, swept off into space by waves so high, they slipped the bonds of the planet’s gravity? And how often would the atmosphere need to be replenished in order to ensure it didn’t get stripped away?

https://youtu.be/kKeenzOsB8U

And last, but not least, any act of terraforming these moons would invariably threaten any life that already exists there. And the threat caused by exposure wouldn’t exactly be one-way. Under all of these circumstances, would it not be better to simply establish outposts on the surface, or perhaps within or directly underneath the ice?

All valid questions, and ones which we will no doubt begin to explore once we start mounting research missions to Europa and the other Jovian moons in the future. And depending on what we find there, we might just choose to put down some roots. And in time, we might even begin thinking about renovating the places so more of our kin can drop by. Before we do any of that, we had better make sure we know what we’re doing, and be sure we aren’t doing any harm in the process!

We have written many interesting articles about Jupiter’s Moons here at Universe Today. Here’s What Are Jupiter’s Moons?, Io, Jupiter’s Volcanic Moon, Jupiter’s Moon Europa, Jupiter’s Moon Ganymede, and Jupiter’s Moon Callisto.

To learn more about terraforming, check out The Definitive Guide To Terraforming, How Do We Terraform Mars?, How Do We Terraform Venus?, and How Do We Terraform the Moon? and Could We Terraform Jupiter?

For more information, check out NASA’s Solar System Exploration page on Jupiter’s Moons.

The post How Do We Terraform Jupiter’s Moons? appeared first on Universe Today.