Carnival of Space #497

Welcome, come in to the 497th Carnival of Space! The Carnival is a community of space science and astronomy writers and bloggers, who submit their best work each week for your benefit. I’m Susie Murph, part of the team at Universe Today and CosmoQuest. So now, on to this week’s stories! Over at Planetaria, Paul […]

The post Carnival of Space #497 appeared first on Universe Today.

Europa’s Venting Global Ocean May Be Easier To Reach Than We Thought

Artist's impression of a water vapor plume on Europa. Credit: NASA/ESA/K. Retherford/SWRI

Last week, on Tuesday, September 20th, NASA announced that they had made some interesting findings about Jupiter’s icy moon Europa. These were based on images taken by the Hubble Space Telescope, the details of which would be released on the following week. Needless to say, since then, the scientific community and general public have been waiting with baited breath.

Earlier today (September 26th) NASA put an end to the waiting and announced the Hubble findings during a NASA Live conference. According to the NASA panel, which was made up of members of the research team, this latest Europa-observing mission revealed evidence of plumes of saline water emanating from Europa’s surface. If true, this would mean that the moon’s subsurface ocean would be more accessible than previously thought.

Using Hubble’s Space Telescope Imaging Spectrograph (STIS) instrument, the team conducted observations of Jupiter and Europa in the ultra-violet spectrum over the course of 15 months. During that time, Europa passed in front of Jupiter (occulted the gas giant) on 10 separate occasions.

And on three of these occasions, the team saw what appeared to be plumes of water erupting from the surface. These plumes were estimated to be reaching up to 200 km (125 miles) from the southern region of the Europa before (presumably) raining back onto the surface, depositing water ice and material from the interior.

The purpose of the observation was to examine Europa’s possible extended atmosphere (aka. exosphere). The method the team employed was similar to the one used to detect atmospheres around extra-solar planets. As William Sparks of the Space Telescope Science Institute (STScI) in Baltimore (and the team leader), explained in a NASA press release:

“The atmosphere of an extrasolar planet blocks some of the starlight that is behind it. If there is a thin atmosphere around Europa, it has the potential to block some of the light of Jupiter, and we could see it as a silhouette. And so we were looking for absorption features around the limb of Europa as it transited the smooth face of Jupiter.”

When they looked at Europa using this same technique, they noted that small patches on the surface were dark, indicating the absorption of UV light. This corresponded to previous work done Lorenz Roth (of the Southwest Research Institute) and his team of researchers in 2012. At this time, they detected evidence of water vapor coming from Europa’s southern polar region.

As they indicated in a paper detailing their results – titled “Transient Water Vapor at Europa’s South Pole” – Roth’s team also relied on UV observations made using the Hubble telescope. Noting a statistically coincident amount of hydrogen and oxygen emissions, they concluded that this was the result of ejected water vapor being broken apart by Jupiter’s radiation (a process known as radiolysis).

Though their methods differed, Sparks and his research team also found evidence of these apparent water plumes, and in the same place no less. Based on the latest information from STIS, most of the apparent plumes are located in the moon’s southern polar region while another appears to be located in the equatorial region.

“When we calculate in a completely different way the amount of material that would be needed to create these absorption features, it’s pretty similar to what Roth and his team found,” Sparks said. “The estimates for the mass are similar, the estimates for the height of the plumes are similar. The latitude of two of the plume candidates we see corresponds to their earlier work.”

Another interesting conclusion to come from this and the 2012 study is the likelihood that these water plumes are intermittent. Basically, Europa is tidally-locked world, which means the same side is always being presented to us when it transits Jupiter. This occus once every 3.5 days, thus giving astronomers and planetary scientists plenty of viewing opportunities.

But the fact that plumes have been observed at some points and not others would seem to indicate that they are periodic. In addition, Roth’s team attempted to spot one of the plume’s observed by Sparks and his colleagues a week after they reported it. However, they were unable to locate this supposed water source. As such, it would appear that the plumes, if they do exist, are short-lived.

These findings are immensely significant for two reasons. On the one hand, they are further evidence that a warm-water, saline ocean exists beneath Europa’s icy surface. On the other, they indicate that any future mission to Europa would be able to access this salt-water ocean with greater ease.

Ever since the Galileo spacecraft conducted a flyby of the Jovian moon, scientists have believed that an interior ocean is lying beneath Europa’s icy surface – one that has between two and three times as much water as all of Earth’s oceans combined. However, estimates of the ice’s thickness range from it being between 10 to 30 km (6–19 mi) thick – with a ductile “warm ice” layer that increases its total thickness to as much as 100 km (60 mi).

Knowing the water periodically reaches the surface through fissures in the ice would mean that any future mission (which would likely include a submarine) would not have to drill so deep. And considering that Europa’s interior ocean is considered to be one of our best bets for finding extra-terrestrial life, knowing that the ocean is accessible is certainly exciting news.

Naturally, Sparks was clear that this latest information was not entirely conclusive. While he believes that the results were statistically significant, and that there were no indications of artifacts in the data, he also emphasized that observations conducted in the UV wavelength are tricky. Therefore, more evidence is needed before anything can be said definitively.

In the future, it is hoped that future observation will help to confirm the existence of water plumes, and how these could have helped create Europa’s “chaos terrain”. Future missions, like NASA’s James Webb Space Telescope (scheduled to launch in 2018) could help confirm plume activity by observing the moon in infrared wavelengths.

As Paul Hertz, the director of the Astrophysics Division at NASA Headquarters in Washington, said:

“Hubble’s unique capabilities enabled it to capture these plumes, once again demonstrating Hubble’s ability to make observations it was never designed to make. This observation opens up a world of possibilities, and we look forward to future missions — such as the James Webb Space Telescope — to follow up on this exciting discovery.”

Other team members include Britney Schmidt, an assistant professor at the School of Earth and Atmospheric Sciences at Georgia Institute of Technology in Atlanta; and Jennifer Wiseman, senior Hubble project scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.

Their work will be published in the Sept. 29 issue of the Astrophysical Journal. And be sure to enjoy this video by NASA about this exciting find:

Further Reading: NASA Live

The post Europa’s Venting Global Ocean May Be Easier To Reach Than We Thought appeared first on Universe Today.

Hubble’s Surprising Find On Europa To Be Announced By NASA Monday

Europa as imaged by the Galileo spacecraft. Europa is a prime target in the search for life because of its sub-surface ocean. Image: NASA/JPL-Caltech/SETI Institute

NASA will make a “surprising” announcement about Jupiter’s moon Europa on Monday, Sept. 26th, at 2:00 PM EDT. They haven’t said much, other than there is “surprising evidence of activity that may be related to the presence of a subsurface ocean on Europa.” Europa is a prime target for the search for life because of its subsurface ocean.

The new evidence is from a “unique Europa observing campaign” aimed at the icy moon. The Hubble Space Telescope captured the images in these new findings, so maybe we’ll be treated to some more of the beautiful images that we’re accustomed to seeing from the Hubble.

We always welcome beautiful images, of course. But the real interest in Europa lies in its suitability for harboring life. Europa has a frozen surface, but underneath that ice there is probably an ocean. The frozen surface is thought to be about 10 – 30 km thick, and the ocean may be about 100 km (62 miles) thick. That’s a lot of water, perhaps double what Earth has, and that water is probably salty.


Back in 2012, the Hubble captured evidence of plumes of water vapor escaping from Europa’s south pole. Hubble didn’t directly image the water vapor, but it “spectroscopically detected auroral emissions from oxygen and hydrogen” according to a NASA news release at the time.

There are other lines of evidence that support the existence of a sub-surface ocean on Europa. But there are a lot of questions. Will the frozen top layer be several tens of kilometres thick, or only a few hundred meters thick? Will the sub-surface ocean be warm, liquid water? Or will it be frozen too, but warmer than the surface ice and still convective?

Hopefully, new evidence from the Hubble will answer these questions definitively. Stay tuned to Monday’s teleconference to find out what NASA has to tell us.

These are the scientists who will be involved in the teleconference:

  • Paul Hertz, director of the Astrophysics Division at NASA Headquarters in Washington
  • William Sparks, astronomer with the Space Telescope Science Institute in Baltimore
  • Britney Schmidt, assistant professor at the School of Earth and Atmospheric Sciences at Georgia Institute of Technology in Atlanta
  • Jennifer Wiseman, senior Hubble project scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland

The NASA website will stream audio from the teleconference.

More About Europa:

The post Hubble’s Surprising Find On Europa To Be Announced By NASA Monday appeared first on Universe Today.

Uranus & Neptune May Keep “Hitler’s Acid” Stable Under Massive Pressure

Uranus and Neptune, the Solar System’s ice giant planets. Credit: Wikipedia Commons

“Hitler’s acid” is a colloquial name used to refer to Orthocarbonic acid – a name which was inspired from the fact that the molecule’s appearance resembles a swastika. As chemical compounds go, it is quite exotic, and chemists are still not sure how to create it under laboratory conditions.

But it just so happens that this acid could exist in the interiors of planets like Uranus and Neptune. According to a recent study from a team of Russian chemists, the conditions inside Uranus and Neptune could be ideal for creating exotic molecular and polymeric compounds, and keeping them under stable conditions.

The study was produced by researchers from the Moscow Institute of Physics and Technology (MIPT) and the Skolkovo Institute of Science and Technology (Skoltech). Titled “Novel Stable Compounds in the C-H-O Ternary System at High Pressure”, the paper describes how the high pressure environments inside planets could create compounds that exist nowhere else in the Solar System.

Professor Artem Oganov – a professor at Skoltech and the head of MIPT’s Computational Materials Discovery Lab – is the study’s lead author. Years back, he and a team of researchers developed the worlds most powerful algorithm for predicting the formation of crystal structures and chemical compounds under extreme conditions.

Known as the Universal Structure Predictor: Evolutionary Xtallography (UPSEX), scientists have since used this algorithm to predict the existence of substances that are considered impossible in classical chemistry, but which could exist where pressures and temperatures are high enough – i.e. the interior of a planet.

With the help of Gabriele Saleh, a postdoc member of MIPT and the co-author of the paper, the two decided to use the algorithm to study how the carbon-hydrogen-oxygen system would behave under high pressure. These elements are plentiful in our Solar System, and are the basis of organic chemistry.

Until now, it has not been clear how these elements behave when subjected to extremes of temperature and pressure. What they found was that under these types of extreme conditions, which are the norm inside gas giants, these elements form some truly exotic compounds.

As Prof. Oganov explained in a MIPT press release:

“The smaller gas giants – Uranus and Neptune – consist largely of carbon, hydrogen and oxygen. We have found that at a pressure of several million atmospheres unexpected compounds should form in their interiors. The cores of these planets may largely consist of these exotic materials.”

Under normal pressure – i.e. what we experience here on Earth (100 kPa) – any carbon, hydrogen or oxygen compounds (with the exception of methane, water and CO²) are unstable. But at pressures in the range 1 to 400 GPa (10,000 to 4 million times Earth normal), they become stable enough to form several new substances.

These include carbonic  acid, orthocarbonic acid (Hitler’s acid) and other rare compounds. This was a very unusual find, considering that these chemicals are unstable under normal pressure conditions. In carbonic acid’s case, it can only remain stable when kept at very low temperatures in a vacuum.

At pressures of 314 GPa, they determined that carbonic acid (H²CO³) would react with water to form orthocarbonic acid (H4CO4). This acid is also extremely unstable, and so far, scientists have not yet been able to produce it in a laboratory environment.

This research is of considerable importance when it comes to modelling the interior of planets like Uranus and Neptune. Like all gas giants, the structure and composition of their interiors have remained the subject of speculation due to their inaccessible nature. But it could also have implications in the search for life beyond Earth.

According to Oganov and Saleh, the interiors of many moons that orbit gas giants (like Europa, Ganymede and Enceladus) also experience these types of pressure conditions. Knowing that these kinds of exotic compounds could exist in their interiors is likely to change what scientist’s think is going on under their icy surfaces.

“It was previously thought that the oceans in these satellites are in direct contact with the rocky core and a chemical reaction took place between them,” said Oganov. “Our study shows that the core should be ‘wrapped’ in a layer of crystallized carbonic acid, which means that a reaction between the core and the ocean would be impossible.”

For some time, scientists have understood that at high temperatures and pressures, the properties of matter change pretty drastically. And while here on Earth, atmospheric pressure and temperatures are quite stable (just the way we like them!), the situation in the outer Solar System is much different.

By modelling what can occur under these conditions, and knowing what chemical buildings blocks are involved, we could be able to determine with a fair degree of confidence what the interior’s of inaccessible bodies are like. This will give us something to work with when the day comes (hopefully soon) that we can investigate them directly.

Who knows? In the coming years, a mission to Europa may find that the core-mantle boundary is not a habitable environment after all. Rather than a watery environment kept warm by hydrothermal activity, it might instead by a thick layer of chemical soup.

Then again, we may find that the interaction of these chemicals with geothermal energy could produce organic life that is even more exotic!

Further Reading: MIPT, Nature Scientific Reports

The post Uranus & Neptune May Keep “Hitler’s Acid” Stable Under Massive Pressure appeared first on Universe Today.

Europa Clipper Team Braces For Bad News

An artist's concept of the Europa mission. The multi-year mission would conduct fly-bys of Europa designed to protect it from the extreme environment there. Image: NASA/JPL-Caltech

Jupiter’s moon Europa is a juicy target for exploration. Beneath its surface of ice there’s a warm salty, ocean. Or potentially, at least. And if Earth is our guide, wherever you find a warm, salty, ocean, you find life. But finding it requires a dedicated, and unique, mission.

If each of the bodies in our Solar System weren’t so different from each other, we could just have one or two types of missions. Things would be much easier, but also much more boring. But Europa isn’t boring, and it won’t be easy to explore. Exploring it will require a complex, custom mission. That means expensive.

NASA’s proposed mission to Europa is called the Europa Clipper. It’s been in the works for a few years now. But as the mission takes shape, and as the science gets worked out, a parallel process of budget wrangling is also ongoing. And as reported by there could be bad news incoming for the first-ever mission to Europa.

At issue is next year’s funding for the Europa Clipper. Officials with NASA’s Outer Planets Assessment Group are looking for ways to economize and cut costs for Fiscal Year (FY) 2017, while still staying on track for a mission launch in 2022.

According to Bob Pappalardo, Europa Clipper’s project scientist at the Jet Propulsion Laboratory, funding will be squeezed in 2017. “There is this squeeze in FY17 that we have,” said Pappalardo. “We’re asking the instrument teams and various other aspects of the project, given that squeeze, what will it take in the out years to maintain that ’22 launch.”

As for the actual dollar amounts, there are different numbers floating around, and they don’t all jive with each other. In 2016, the Europa Mission received $175 million from Congress, but in the administration’s budget proposal for 2017, they only requested $49.6 million.

There’s clearly some uncertainty in these numbers, and that uncertainty is reflected in Congress, too. An FY 2017 House bill earmarks $260 million for the Europa mission. And the Senate has crafted a bill in support of the mission, but doesn’t allocate any funding for it. Neither the Senate nor the Congress has passed their bills.

This is not the first time that a mis-alignment has appeared between NASA and the different levels of government when it comes to funding. It’s pretty common. It’s also pretty common for the higher level of funding to prevail. But it’s odd that NASA’s requested amount is so low. NASA’s own low figure of $49.6 million is fuelling the perception that they themselves are losing interest in the Europa Clipper.

But is reporting that that is not the case. According to Curt Niebur, NASA’s program scientist for the Europa mission, “Everyone is aware of how supportive and generous Congress has been of this mission, and I’m happy to say that that support and encouragement is now shared by the administration, and by NASA as well. Everybody is on board the Europa Clipper and getting this mission to the launch pad as soon as our technical challenges and our budget will allow.”


What all this seems to mean is that the initial science and instrumentation for the mission will be maintained, but no additional capacity will be added. NASA is no longer considering things like free-flying probes to measure the plumes of water ice coming off the moon. According to Niebur, “The additional science value provided by these additions was not commensurate with the associated impact to resources, to accommodation, to cost. There just wasn’t enough science there to balance that out.”

The Europa Clipper will be a direct shot to Europa, without any gravity assist on the way. It will likely be powered by the Space Launch System. The main goal of the mission is to learn more about the icy moon’s potential habitability. There are tantalizing clues that it has an ocean about 100 km thick, kept warm by the gravity-tidal interactions with Jupiter, and possibly by radioactive decay in the rocky mantle. There’s also some evidence that the composition of the sub-surface ocean is similar to Earth’s.

Mars is a fascinating target, no doubt about it. But as far as harbouring life, Europa might be a better bet. Europa’s warm, salty ocean versus Mar’s dry, cold surface? A lot of resources have been spent studying Mars, and the Europa mission represents a shift in resources in that regard.

It’s unfortunate that a few tens of million dollars here or there can hamper our search for life beyond Earth. But the USA is a democracy, so that’s the way it is. These discrepancies and possible disputes between NASA and the different levels of government may seem disconcerting, but that’s the way these things get done.

At least we hope it is.


Europa on Universe Today:

The post Europa Clipper Team Braces For Bad News appeared first on Universe Today.

Juno Transmits 1st Orbital Imagery after Swooping Arrival Over Jovian Cloud Tops and Powering Up

This color view from NASA's Juno spacecraft is made from some of the first images taken by JunoCam after the spacecraft entered orbit around Jupiter on July 4, 2016.  Credits: NASA/JPL-Caltech/SwRI/MSSS

NASA’s newly arrived Jovian orbiter Juno has transmitted its first imagery since reaching orbit last week on July 4 after swooping over Jupiter’s cloud tops and powering back up its package of state-of-the-art science instruments for unprecedented research into determining the origin of our solar systems biggest planet.

The breathtaking image clearly shows the well known banded cloud tops in Jupiter’s atmosphere as well as the famous Great Red Spot and three of the humongous planet’s four largest moons — Io, Europa and Ganymede.

The ‘Galilean’ moons are annotated from left to right in the lead image.

Juno’s visible-light camera named JunoCam was turned on six days after Juno fired its main engine to slow down and be captured into orbit around Jupiter – the ‘King of the Planets’ following a nearly five year long interplanetary voyage from Earth.

The image was taken when Juno was 2.7 million miles (4.3 million kilometers) distant from Jupiter on July 10, at 10:30 a.m. PDT (1:30 p.m. EDT, 5:30 UTC), and traveling on the outbound leg of its initial 53.5-day capture orbit.

Juno came within only about 3000 miles of the cloud tops and passed through Jupiter’s extremely intense and hazardous radiation belts during orbital arrival over the north pole.

The newly released JunoCam image is visible proof that Juno survived the do-or-die orbital fireworks on America’s Independence Day that placed the baskeball-court sized probe into orbit around Jupiter and is in excellent health to carry out its groundbreaking mission to elucidate Jupiter’s ‘Genesis.’

“This scene from JunoCam indicates it survived its first pass through Jupiter’s extreme radiation environment without any degradation and is ready to take on Jupiter,” said Scott Bolton, principal investigator from the Southwest Research Institute in San Antonio, in a statement.

“We can’t wait to see the first view of Jupiter’s poles.”

Within two days of the nerve wracking and fully automated 35-minute-long Jupiter Orbital Insertion (JOI) maneuver, the Juno engineering team begun powering up five of the probes science instruments on July 6.

All nonessential instruments and systems had been powered down in the final days of Juno’s approach to Jupiter to ensure the maximum chances for success of the critical JOI engine firing.

“We had to turn all our beautiful instruments off to help ensure a successful Jupiter orbit insertion on July 4,” said Bolton.

“But next time around we will have our eyes and ears open. You can expect us to release some information about our findings around September 1.”

Juno resumed high data rate communications with Earth on July 5, the day after achieving orbit.

We can expect to see more JunoCam images taken during this first orbital path around the massive planet.

But the first high resolution images are still weeks away and will not be available until late August on the inbound leg when the spacecraft returns and swoops barely above the clouds.

“JunoCam will continue to take images as we go around in this first orbit,” said Candy Hansen, Juno co-investigator from the Planetary Science Institute, Tucson, Arizona, in a statement.

“The first high-resolution images of the planet will be taken on August 27 when Juno makes its next close pass to Jupiter.”

All of JunoCams images will be released to the public.

During a 20 month long science mission – entailing 37 orbits lasting 14 days each – the probe will plunge to within about 2,600 miles (4,100 kilometers) of the turbulent cloud tops.

It will collect unparalleled new data that will unveil the hidden inner secrets of Jupiter’s origin and evolution as it peers “beneath the obscuring cloud cover of Jupiter and study its auroras to learn more about the planet’s origins, structure, atmosphere and magnetosphere.”

The solar powered Juno spacecraft approached Jupiter over its north pole, affording an unprecedented perspective on the Jovian system – “which looks like a mini solar system” – as it flew through the giant planets intense radiation belts in ‘autopilot’ mode.

Juno is the first solar powered probe to explore Jupiter or any outer planet.

In the final weeks of the approach JunoCam captured dramatic views of the Jupiter all four of the Galilean Moons moons — Io, Europa, Ganymede and Callisto.

At the post JOI briefing on July 5, these were combined into a spectacular JunoCam time-lapse movie releaed by Bolton and NASA.

Watch and be mesmerized -“for humanity, our first real glimpse of celestial harmonic motion” says Bolton.

Video caption: NASA’s Juno spacecraft captured a unique time-lapse movie of the Galilean satellites in motion about Jupiter. The movie begins on June 12th with Juno 10 million miles from Jupiter, and ends on June 29th, 3 million miles distant. The innermost moon is volcanic Io; next in line is the ice-crusted ocean world Europa, followed by massive Ganymede, and finally, heavily cratered Callisto. Galileo observed these moons to change position with respect to Jupiter over the course of a few nights. From this observation he realized that the moons were orbiting mighty Jupiter, a truth that forever changed humanity’s understanding of our place in the cosmos. Earth was not the center of the Universe. For the first time in history, we look upon these moons as they orbit Jupiter and share in Galileo’s revelation. This is the motion of nature’s harmony. Credits: NASA/JPL-Caltech/MSSS

The $1.1 Billion Juno was launched on Aug. 5, 2011 from Cape Canaveral, Florida atop the most powerful version of the Atlas V rocket augmented by 5 solid rocket boosters and built by United Launch Alliance (ULA). That same Atlas V 551 version just launched MUOS-5 for the US Navy on June 24.

The Juno spacecraft was built by prime contractor Lockheed Martin in Denver.

The last NASA spacecraft to orbit Jupiter was Galileo in 1995. It explored the Jovian system until 2003.

From Earth’s perspective, Jupiter was in conjunction with Earth’s Moon shortly after JOI during the first week in July. Personally its thrilling to realize that an emissary from Earth is once again orbiting Jupiter after a 13 year long hiatus as seen in the authors image below – coincidentally taken the same day as JunoCam’s first image from orbit.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

The post Juno Transmits 1st Orbital Imagery after Swooping Arrival Over Jovian Cloud Tops and Powering Up appeared first on Universe Today.

7 Days Out From Orbital Insertion, NASA’s Juno Images Jupiter and its Largest Moons

This annotated color view of Jupiter and its four largest moons -- Io, Europa, Ganymede and Callisto -- was taken by the JunoCam camera on NASA's Juno spacecraft on June 21, 2016, at a distance of 6.8 million miles (10.9 million kilometers) from Jupiter. Image credit: NASA/JPL-Caltech/MSSS

Now just 7 days out from a critical orbital insertion burn, NASA’s Jupiter-bound Juno orbiter is closing in fast on the massive gas giant. And as its coming into focus the spacecraft has begun snapping a series of beautiful images of the biggest planet and its biggest moons.

In a newly released color image snapped by the probes educational public outreach camera named Junocam, banded Jupiter dominates a spectacular scene that includes the giant planet’s four largest moons — Io, Europa, Ganymede and Callisto.

Junocam’s image of the approaching Jovian system was taken on June 21, 2016, at a distance of 6.8 million miles (10.9 million kilometers) and hints at the multitude of photos and science riches to come from Juno.

“Juno on Jupiter’s Doorstep,” says a NASA description. “And the alternating light and dark bands of the planet’s clouds are just beginning to come into view,” revealing its “distinctive swirling bands of orange, brown and white.”

Rather appropriately for an American space endeavor, the entire mission depends on do or die ‘Independence Day’ fireworks.

On the evening of July 4, Juno must fire its main engine for 35 minutes. The Joy of JOI – or Jupiter Orbit Insertion, will place NASA’s robotic explorer into a polar orbit around the gas giant.

The approach over the north pole is unlike earlier probes that approached from much lower latitudes nearer the equatorial zone, and thus provide a perspective unlike any other.

After a five-year and 2.8 Billion kilometer (1.7 Billion mile) outbound trek to the Jovian system and the largest planet in our solar system and an Earth flyby speed boost, the moment of truth for Juno is now at hand.

And preparations are in full swing by the science and engineering team to ensure a spectacular Fourth of July fireworks display.

The team has been in contact with Juno 24/7 since June 11 and already uplinked the rocket firing parameters.

Signals traveling at the speed of light take 10 minutes to reach Earth.

The protective cover that shields Juno’s main engine from micrometeorites and interstellar dust was opened on June 20.

“And the software program that will command the spacecraft through the all-important rocket burn was uplinked,” says NASA.

The pressurization of the propulsion system is set for June 28.

“We have over five years of spaceflight experience and only 10 days to Jupiter orbit insertion,” said Rick Nybakken, Juno project manager from NASA’s Jet Propulsion Laboratory in Pasadena, California, said in a statement.

“It is a great feeling to put all the interplanetary space in the rearview mirror and have the biggest planet in the solar system in our windshield.”

On the night of orbital insertion, Juno will fly within 2,900 miles (4,667 kilometers) of the Jovian cloud tops.

All instruments except those critical for the JOI insertion burn on July 4, will be tuned off on June 29. That includes shutting down Junocam.

“If it doesn’t help us get into orbit, it is shut down,” said Scott Bolton, Juno’s principal investigator from the Southwest Research Institute in San Antonio.

“That is how critical this rocket burn is. And while we will not be getting images as we make our final approach to the planet, we have some interesting pictures of what Jupiter and its moons look like from five-plus million miles away.”

During a 20 month long science mission – entailing 37 orbits lasting 11 days each – the probe will plunge to within about 3000 miles of the turbulent cloud tops and collect unprecedented new data that will unveil the hidden inner secrets of Jupiter’s origin and evolution.

“Jupiter is the Rosetta Stone of our solar system,” says Bolton. “It is by far the oldest planet, contains more material than all the other planets, asteroids and comets combined and carries deep inside it the story of not only the solar system but of us. Juno is going there as our emissary — to interpret what Jupiter has to say.”

Junocam has already taken some striking images during the Earth flyby gravity assist speed boost on Oct. 9, 2013.

For example the dazzling portrait of our Home Planet high over the South American coastline and the Atlantic Ocean.

For a hint of what’s to come, see our colorized Junocam mosaic of land, sea and swirling clouds, created by Ken Kremer and Marco Di Lorenzo.

As Juno sped over Argentina, South America and the South Atlantic Ocean it came within 347 miles (560 kilometers) of Earth’s surface.

During the flyby, the science team observed Earth using most of Juno’s nine science instruments since the slingshot also serves as an important dress rehearsal and key test of the spacecraft’s instruments, systems and flight operations teams.

The $1.1 Billion Juno was launched on Aug. 5, 2011 from Cape Canaveral, Florida atop the most powerful version of the Atlas V rocket augmented by 5 solid rocket boosters and built by United Launch Alliance (ULA).

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.
Ken Kremer

The post 7 Days Out From Orbital Insertion, NASA’s Juno Images Jupiter and its Largest Moons appeared first on Universe Today.