We Land on Mars in Just 5 Days!

Watch how Schiaparelli will land on Mars Cross your fingers for good weather on the Red Planet on October 19. That’s the day the European Space Agency’s Schiaparelli lander pops open its parachute, fires nine, liquid-fueled thrusters and descends to the surface of Mars. Assuming fair weather, the lander should settle down safely on the wide-open plains of Meridiani […]

The post We Land on Mars in Just 5 Days! appeared first on Universe Today.

ExoMars 2018 Rover Postponed to 2020 Launch

ESA Exomars rover launch has been rescheduled to launch two years later in 2020.  Credit:ESA

Liftoff of the ExoMars 2018 rover mission currently under development jointly by Europe and Russia has just been postponed for two years to 2020, according to an announcement today, May 2, from the European Space Agency (ESA) and the Russian space agency Roscosmos.

The delay was forced by a variety of technical and funding issues that ate up the schedule margin to enable a successful outcome.

“Taking into account the delays in European and Russian industrial activities and deliveries of the scientific payload, a launch in 2020 would be the best solution,” ESA explained in a statement today.

The ambitious ExoMars rover is the second of two joint Euro-Russian missions to explore the Red Planet.

The first mission known as ExoMars 2016 was successfully launched last month from the Baikonur Cosmodrome in Kazakhstan atop a Russian Proton-M rocket on March 14.

The renamed ExoMars 2020 mission involves a European-led rover and a Russian-led surface platform and is also slated to blastoff on an Russian Proton rocket.

Roscosmos and ESA jointly decided to move the launch to the next available Mars launch window in July 2020. The costs associated with the delay are not known.

The delay means that the Euro-Russian rover mission will launch the same year as NASA’s 2020 rover.

The rover is being built by prime contractor Airbus Defense and Space in Stevenage, England.

The descent module and surface science package are provided by Roscosmos with some contributions by ESA.

Recognizing the potential for a delay, ESA and Roscosmos set up a tiger team in late 2015 to assess the best options.

“Russian and European experts made their best efforts to meet the 2018 launch schedule for the mission, and in late 2015, a dedicated ESA-Roscosmos Tiger Team, also including Russian and European industries, initiated an analysis of all possible solutions to recover schedule delays and accommodate schedule contingencies,” said ESA in the statement.

The tiger team reported their results to ESA Director General Johann-Dietrich Woerner and Roscosmos Director General Igor Komarov.

Woerner and Komarov then “jointly decided to move the launch to the next available Mars launch window in July 2020, and tasked their project teams to develop, in cooperation with the industrial contactors, a new baseline schedule aiming towards a 2020 launch. Additional measures will also be taken to maintain close control over the activities on both sides up to launch.”

The ExoMars 2016 interplanetary mission is comprised of the Trace Gas Orbiter (TGO) and the Schiaparelli lander. The spacecraft are due to arrive at Mars in October 2016.

The goal of TGO is to search for possible signatures of life in the form of trace amounts of atmospheric methane on the Red Planet.

The main purpose of Schiaparelli is to demonstrate key entry, descent, and landing technologies for the follow on 2nd ExoMars mission that will land the first European rover on the Red Planet.

The now planned 2020 ExoMars mission will deliver an advanced rover to the Red Planet’s surface. It is equipped with the first ever deep driller that can collect samples to depths of 2 meters (seven feet) where the environment is shielded from the harsh conditions on the surface – namely the constant bombardment of cosmic radiation and the presence of strong oxidants like perchlorates that can destroy organic molecules.

ExoMars was originally a joint NASA/ESA project.

But thanks to hefty cuts to NASA’s budget by Washington DC politicians, NASA was forced to terminate the agencies involvement after several years of extremely detailed work and withdraw from participation as a full partner in the exciting ExoMars missions.

NASA is still providing the critical MOMA science instrument that will search for organic molecules.

Thereafter Russia agreed to take NASA’s place and provide the much needed funding and rockets for the pair of launches in March 2016 and May 2018.

TGO will also help search for safe landing sites for the ExoMars 2020 lander and serve as the all important data communication relay station sending signals and science from the rover and surface science platform back to Earth.

ExoMars 2016 is Europe’s most advanced mission to Mars and joins Europe’s still operating Mars Express Orbiter (MEX), which arrived back in 2004, as well as a fleet of NASA and Indian probes.

The Trace Gas Orbiter (TGO) and Schiaparelli lander arrive at Mars on October 19, 2016.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

The post ExoMars 2018 Rover Postponed to 2020 Launch appeared first on Universe Today.

Bold Euro-Russian Expedition Blasts Free of Earth En Route to Mars in Search of Life’s Indicators

Artists concept of ExoMars spacecraft separation from Breeze M fourth stage. Credit: ESA

The cooperative Euro-Russian ExoMars 2016 expedition is now en route to the Red Planet after successfully firing its upper stage booster one final time on Monday evening, March 15, to blast free of the Earth’s gravitational tug and begin a 500 million kilometer interplanetary journey in a bold search of indications of life emanating from potential Martian microbes.

The vehicle is in “good health” with the solar panels unfurled, generating power and on course for the 500 Million kilometer (300 million mile) journey to Mars.

The joint European/Russian ExoMars spacecraft successfully blasted off from the Baikonur Cosmodrome in Kazakhstan atop a Russian Proton-M rocket at 5:31:42 a.m. EDT (0931:42 GMT), Monday, March 14, with the goal of searching for possible signatures of life in the form of trace amounts of atmospheric methane on the Red Planet.

https://youtu.be/2r7qqK5E7fU

Video caption: Blastoff of Russian Proton rocket from the Baikonur Cosmodrome carrying ExoMars 2016 mission on March 14, 2016. Credit: Roscosmos

The first three stages of the 191-foot-tall (58-meter) Russian-built rocket fired as scheduled over the first ten minutes and lofted the 9,550-pound (4,332-kilogram) ExoMars to orbit.

Three more firings from the Breeze-M fourth stage quickly raised the probe into progressively higher temporary parking orbits around Earth.

But the science and engineering teams from the European Space Agency (ESA) and and Roscosmos had to keep their fingers crossed and endure an agonizingly long wait of more than 10 hours before the fourth and final ignition of the Proton’s Breeze-M upper stage required to break the bonds of Earth.

The do or die last Breeze-M upper stage burn with ExoMars still attached was finally fired exactly as planned.

The probe was released at last from the Breeze at 20:13 GMT.

However, it took another long hour to corroborate the missions true success until the first acquisition of signal (AOS) from the spacecraft was received at ESA’s control centre in Darmstadt, Germany via the Malindi ground tracking station in Africa at 5:21:29 p.m. EST (21:29 GMT), confirming a fully successful launch with the spacecraft in good health.

It was propelled outwards to begin a seven-month-long journey to the Red Planet to the great relief of everyone involved from ESA, Roscosmos and other nations participating. An upper stage failure caused the total loss of Russia’s prior mission to Mars; Phobos-Grunt.

“Only the process of collaboration produces the best technical solutions for great research results. Roscosmos and ESA are confident of the mission’s success,” said Igor Komarov, General Director of the Roscosmos State Space Corporation, in a statement.

The ExoMars 2016 mission is comprised of a joined pair of European-built spacecraft consisting of the Trace Gas Orbiter (TGO) plus the Schiaparelli entry, descent and landing demonstrator module, built and funded by ESA.

“It’s been a long journey getting the first ExoMars mission to the launch pad, but thanks to the hard work and dedication of our international teams, a new era of Mars exploration is now within our reach,” says Johann-Dietrich Woerner, ESA’s Director General.

“I am grateful to our Russian partner, who have given this mission the best possible start today. Now we will explore Mars together.”

The cooperative mission includes significant participation from the Russian space agency Roscosmos who provided the Proton-M launcher, part of the science instrument package, the surface platform and ground station support.

The Trace Gas Orbiter (TGO) and Schiaparelli lander are speeding towards Mars joined together, on a collision course for the Red Planet. They will separate on October 16, 2016 at distance of 900,000 km from the planet, three days before arriving on October 19, 2016.
TGO will fire thrusters to alter course and enter an initial four-day elliptical orbit around the fourth planet from the sun ranging from 300 km at its perigee to 96 000 km at its apogee, or furthest point.

Over the next year, engineers will command TGO to fire thrusters and conduct a complex series of ‘aerobraking’ manoeuvres that will gradually lower the spacecraft to circular 400 km (250 mi) orbit above the surface.

The science mission to analyse for rare gases, including methane, in the thin Martian atmosphere at the nominal orbit is expected to begin in December 2017.

As TGO enters orbit, the Schiaparelli lander will smash into the atmosphere and begin a harrowing six minute descent to the surface.

The main purpose of Schiaparelli is to demonstrate key entry, descent, and landing technologies for the follow on 2nd ExoMars mission in 2018 that will land the first European rover on the Red Planet.

The battery powered lander is expected to operate for perhaps four and up to eight days until the battery is depleted.

It will conduct a number of environmental science studies such as “obtaining the first measurements of electric fields on the surface of Mars that, combined with measurements of the concentration of atmospheric dust, will provide new insights into the role of electric forces on dust lifting – the trigger for dust storms,” according to ESA.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

The post Bold Euro-Russian Expedition Blasts Free of Earth En Route to Mars in Search of Life’s Indicators appeared first on Universe Today.

ExoMars Spacecraft Launches to Red Planet Searching for Signs of Life

ExoMars 2016 lifted off on a Proton-M rocket from Baikonur, Kazakhstan at 09:31 GMT on 14 March 2016.   Copyright ESA–Stephane Corvaja, 2016

The joint European/Russian ExoMars spacecraft successfully launched early this morning from the Baikonur Cosmodrome in Kazakhstan atop a Proton-M rocket at 5:31:42 a.m. EDT (0931:42 GMT), Monday, March 14, with the goal of searching for signs of life on the Red Planet.

The spacecraft is currently circling in a temporary and preliminary parking orbit around Earth following liftoff of the 191-foot-tall (58-meter) Russian-built rocket under overcast skies – awaiting a critical final engine burn placing the probe on an interplanetary trajectory to Mars.

The 9,550-pound (4,332-kilogram) ExoMars 2016 spacecraft continued soaring to orbit after nominal firings of the Proton’s second and third stages and jettisoning of the payload fairing halves protecting the vehicle during ascent through Earth’s atmosphere.

A total of four more burns from the Breeze-M upper stage are required to boost ExoMars higher and propel it outwards on its seven-month-long journey to the Red Planet.

So the excitement and nail biting is not over yet and continues to this moment. The final successful outcome of today’s mission cannot be declared until more than 10 hours after liftoff – after the last firing of the Breeze-M upper stage sets the probe on course for Mars and escaping the tug of Earth’s gravity.

The first three Breeze-M fourth stage burns have now been completed as of about 9:40 am EST, according to ESA mission control on Darmstadt, Germany.

The fourth and final ignition of the Breeze-M upper stage and spacecraft separation is slated for after 3 p.m. EDT today, March 14, 2016.

The first acquisition of signal from the spacecraft is expected later at about 5:21:29 p.m. EST (21:29 GMT).

The ExoMars 2016 mission is comprised of a joined pair of European-built spacecraft consisting of the Trace Gas Orbiter (TGO) plus the Schiaparelli entry, descent and landing demonstrator module, built and funded by the European Space Agency (ESA).

The cooperative mission includes significant participation from the Russian space agency Roscosmos who provided the Proton-M launcher, part of the science instrument package, the surface platform and ground station support.

The launch was carried live courtesy of a European Space Agency (ESA) webcast:

http://www.esa.int/Our_Activities/Space_Science/ExoMars/Watch_ExoMars_launch

ESA is continuing live streaming of the launch events throughout the day as burns continue and events unfold lead up to the critical final burn of the Breeze-M upper stage

The ExoMars 2016 TGO orbiter is equipped with a payload of four science instruments supplied by European and Russian scientists. It will investigate the source and precisely measure the quantity of the methane and other trace gases.

The 2016 lander will carry an international suite of science instruments and test European entry, descent and landing (EDL) technologies for the 2nd ExoMars mission in 2018.

The battery powered lander is expected to operate for perhaps four and up to eight days until the battery is depleted.

The 2018 ExoMars mission will deliver an advanced rover to the Red Planet’s surface.

It is equipped with the first ever deep driller that can collect samples to depths of 2 meters (seven feet) where the environment is shielded from the harsh conditions on the surface – namely the constant bombardment of cosmic radiation and the presence of strong oxidants like perchlorates that can destroy organic molecules.

ExoMars was originally a joint NASA/ESA project.

But thanks to hefty cuts to NASA’s budget by Washington DC politicians, NASA was forced to terminate the agencies involvement after several years of extremely detailed work and withdraw from participation as a full partner in the exciting ExoMars missions.

NASA is still providing the critical MOMA science instrument that will search for organic molecules.

Thereafter Russia agreed to take NASA’s place and provide the much needed funding and rockets for the pair of launches in March 2016 and May 2018.

TGO will also help search for safe landing sites for the ExoMars 2018 lander and serve as the all important data communication relay station sending signals and science from the rover and surface science platform back to Earth.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

The post ExoMars Spacecraft Launches to Red Planet Searching for Signs of Life appeared first on Universe Today.

Countdown Begins for Blastoff of ExoMars 2016 Spacecraft on March 14 – Watch Live

Proton rocket and ExoMars 2016 spacecraft rolled out to launch pad at the Baikonur cosmodrome, Kazakhstan Copyright: ESA - B. Bethge

The countdown has begun for blastoff of the ambitious European/Russian ExoMars 2016 spacecraft from the Baikonur Cosmodrome in Kazakhstan on March 14. Its goal is to search for minute signatures of methane gas that could possibly be an indication of life or of nonbiologic geologic processes ongoing today.

Final launch preparations are now in progress. Liftoff of the powerful Russian Proton booster from Baikonur carrying the ExoMars spacecraft is slated for 5:31:42 a.m. EDT (0931:42 GMT), Monday morning, March 14.

You can watch the launch live courtesy of a European Space Agency (ESA) webcast:

http://www.esa.int/Our_Activities/Space_Science/ExoMars/Watch_ExoMars_launch

The prelaunch play by play begins with live streaming at 4:30 a.m. EDT (08:30 GMT).

The first acquisition of signal from the spacecrft is expected at 21:29 GMT

As launch and post launch events unfold leading to spacecraft separation, ESA plans additional live streaming events at 7:00 a.m. EDT (11:00 GMT) and 5:10 p.m. (21:10 GMT)

Spacecraft separation from the Breeze upper stage is expected at about 10 hours, 41 minutes.

The ExoMars 2016 mission is comprised of a pair of European spacecraft named the Trace Gas Orbiter (TGO) and the Schiaparelli entry, descent and landing demonstration lander, built and funded by the European Space Agency (ESA).

Russian is providing the Proton booster and part of the science instrument package.

“The main objectives of this mission are to search for evidence of methane and other trace atmospheric gases that could be signatures of active biological or geological processes and to test key technologies in preparation for ESA’s contribution to subsequent missions to Mars,” says ESA.

ExoMars is Earth’s lone mission to the Red Planet following the two year postponement of NASA’s InSight lander from 2016 to 2018 to allow time to fix a defective French-built seismometer.

ESA reported late today , March 13, that at T-minus 12 hours the Trace Gas Orbiter has been successfully switch on, a telemetry link was established and the spacecrft battery charging has been completed.

The Proton rocket with the encapsulated spacecraft bolted atop were rolled out to the Baikonur launch pad on Friday, March 11 and the launcher was raised into the vertical position.

ESA mission controller then completed a full launch dress rehearsal on Saturday, March 12.

The ExoMars 2016 TGO orbiter is equipped with a payload of four science instruments supplied by European and Russian scientists. It will investigate the source and precisely measure the quantity of the methane and other trace gases.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

The post Countdown Begins for Blastoff of ExoMars 2016 Spacecraft on March 14 – Watch Live appeared first on Universe Today.

ExoMars 2016 Spacecraft Encapsulated for Red Planet Launch in One Week

The ExoMars 2016 spacecraft composite, comprised of the Trace Gas Orbiter and Schiaparelli, seen during the encapsulation within the launcher fairing  at the Baikonur cosmodrome in Kazakhstan. Launch to Mars is slated for March 14, 2016.  Copyright: ESA - B. Bethge

Final launch preparations are now in full swing for the ambitious European/Russian ExoMars 2016 spacecraft which has been encapsulated inside its payload launcher fairing and is slated to blast off one week from now on March 14, 2016 from Kazakhstan.

On March 2, technicians working at the Baikonur Cosmodrome in Kazakhstan completed the complex multiday mating and enclosure operations of the composite ExoMars 2016 spacecraft to the launch vehicle adapter and the Breeze upper stage inside the nose cone.

The ExoMars 2016 mission is comprised of a pair of European spacecraft named the Trace Gas Orbiter (TGO) and the Schiaparelli lander, built and funded by the European Space Agency (ESA).

“The main objectives of this mission are to search for evidence of methane and other trace atmospheric gases that could be signatures of active biological or geological processes and to test key technologies in preparation for ESA’s contribution to subsequent missions to Mars,” says ESA.

2016’s lone mission to the Red Planet will launch atop a Russian Proton rocket.

The individual orbiter and lander spacecraft were recently mated at Baikonur on February 12.

To prepare for the encapsulation, engineers first tilted the spacecraft horizontally. Then they rolled the first fairing half underneath the spacecraft and Breeze on a track inside the Baikonur cleanroom.

Then they used an overhead crane to carefully lower the second fairing half and maneuver it into place from above to fully encapsulate the precious payload.

The 13.5 foot (4.1-meter) diameter payload fairing holding the ExoMars 2016 spacecraft and Breeze upper stage will next be mated to the Proton rocket and rolled out to the Baikonur launch pad.

The launch window extends until March 25.

The ExoMars 2016 TGO orbiter is equipped with a payload of four science instruments supplied by European and Russian scientists. It will investigate the source and precisely measure the quantity of the methane and other trace gases.

The 2016 lander will carry an international suite of science instruments and test European entry, descent and landing (EDL) technologies for the 2nd ExoMars mission in 2018.

The battery powered lander is expected to operate for up to eight days.

The 2018 ExoMars mission will deliver an advanced rover to the Red Planet’s surface.

It is equipped with the first ever deep driller that can collect samples to depths of 2 meters where the environment is shielded from the harsh conditions on the surface – namely the constant bombardment of cosmic radiation and the presence of strong oxidants like perchlorates that can destroy organic molecules.

ExoMars was originally a joint NASA/ESA project.

But thanks to hefty cuts to NASA’s budget by Washington DC politicians, NASA was forced to terminate the agencies involvement after several years of extremely detailed work and withdraw from participation as a full partner in the exciting ExoMars missions.

Thereafter Russia agreed to take NASA’s place and provide the much needed funding and rockets for the pair of launches in March 2016 and May 2018.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

The post ExoMars 2016 Spacecraft Encapsulated for Red Planet Launch in One Week appeared first on Universe Today.

ExoMars 2016 Orbiter and Lander Mated for March Launch

ExoMars Schiaparelli lander being mated with the Trace Gas Orbiter on 12 February 2016. Credit: ESA - B. Bethge

Earth’s lone mission to the Red Planet this year has now been assembled into launch configuration and all preparations are currently on target to support blastoff from Baikonur at the opening of the launch window on March 14, 2016.

The ambitious ExoMars 2016 mission is comprised of a pair of European spacecraft named the Trace Gas Orbiter (TGO) and the Schiaparelli lander, built and funded by the European Space Agency (ESA).

The duo have now been assembled and mated by technicians into their final launch configuration, working in a clean room at the Baikonur cosmodrome in Kazakhstan, for launch atop a Russian Proton rocket.

“The main objectives of this mission are to search for evidence of methane and other trace atmospheric gases that could be signatures of active biological or geological processes and to test key technologies in preparation for ESA’s contribution to subsequent missions to Mars,” says ESA.

After launch the pair will remain joined for the seven month long interplanetary journey to Mars until 16 October, at which time the Schiaparelli entry, descent and landing (EDL) demonstrator module will separate from the orbiter.

Three days later on October 19, TGO is slated to enter Mars orbit and Schiaparelli will begin its plummet through the thin Martian atmosphere and hoped for soft landing.

The mating operations commenced on February 12 with the hydrazine fueled lander in a mounting platform surrounding the orbiter that “facilitates the activities that need to be done about 4 meters off the ground,” according to ESA officials.

Over the following days, technicians then completed all the critical connections between the two spacecraft and conducted function tests to insure that all systems were operating as expected.

Specialists from the Airbus Defence and Space team also bonded the final few thermal protection tiles onto Schiaparelli. Several spots remained open during the mating operation to allow for equipment hooks to latch on and maneuver the spacecraft. With those tasks done, technician can apply the finishing touches.

The launch window extends until March 25.

The ExoMars spacecraft will join ESA’s only other Red Planet probe – the Mars Express orbiter – which arrived in 2004 and continues to function well to this day.

The ExoMars 2016 orbiter is equipped with a payload of four science instruments. It will investigate the source and precisely measure the quantity of the methane and other trace gases.

Methane (CH4) gas is the simplest organic molecule and very low levels have reportedly been detected in the thin Martian atmosphere. But the data are not certain and its origin is not clear cut.

Methane could be a marker either for active living organisms today or it could originate from non life geologic processes. On Earth more than 90% of the methane originates from biological sources.

The 2016 lander will carry an international suite of science instruments and test European landing technologies for the 2nd ExoMars mission.

The 2018 ExoMars mission will deliver an advanced rover to the Red Planet’s surface. It is equipped with the first ever deep driller that can collect samples to depths of 2 meters where the environment is shielded from the harsh conditions on the surface – namely the constant bombardment of cosmic radiation and the presence of strong oxidants like perchlorates that can destroy organic molecules.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

The post ExoMars 2016 Orbiter and Lander Mated for March Launch appeared first on Universe Today.

Stunning Images of the February Dawn Planetary Line-up from Around the World

5 Planets Alignment  The Moon 01-30-2016, 06:13am EST outside of Warrenton, Virginia. Image credit and copyright: John Chumack Canon 6D DSLR, 8mm fisheye Lens, Slightly Cropped  ISO 800, 8 second exposure,

Have you seen them? There’s been a quintet of good reasons to awaken early this past week, as the February dawn sky hosts all five classical planets, very nearly in order: Mercury, Venus, Mars, Saturn and Jupiter. For a few days, the waning crescent Moon even joined the show on the weeks leading up to New on February 8th. Fleeting Mercury breaks the streak later this week, exiting the dawn sky as it heads towards superior conjunction on the far side of the Sun on March 23rd.

Several Universe Today readers rose to the challenge of capturing the dawn gathering of planets worldwide, with amazing results. These captures are all the more amazing when you consider the 110 degree plus span—nearly a third of the girth of the entire celestial sphere—from dim Mercury in the dawn, to magnificent Jupiter in the west. This particular apparition of Mercury was better for observers in the southern hemisphere, as the angle of the February ecliptic left the innermost planet hiding bashfully in the dawn for folks up north.

We wrote about this gathering of the planets in the dawn sky last month. Not a true ‘grand alignment’ from a sun-based (biased?) heliocentric perspective, this month’s ‘grand grouping’ sees all five classical planets in the forward-looking windshield of the Earth.

How common is such a dawn alignment? Well, for all five naked eye planets to appear in the sky, you need Mercury to briefly complete the view. But such an occurrence is more of a function of the two slowest members of the quintet, Jupiter and Saturn. Jupiter laps Saturn about every 20 years in its 29 year orbit, making such a dawn or dusk grouping of all five planets in the sky occur roughly every decade or so. How often does Neptune and Uranus join the view? How often do they line up visually… in true orbital order? We’ll leave these astro-calculating challenges up to the asute readers of Universe Today to contemplate.

Dawn Time-Lapse Featuring Venus, Mercury and the Sun - Feb 15, 2016

(Timelapse by Joseph Brimacombe). 

What’s next for the planets in 2016? Well, Jupiter heads towards opposition on March 8th, becoming the first of the group to break form and enter the dusk sky. Mars then follows suit, reaching opposition on May 22nd, and swelling to a favorable appearance 19” arc seconds in size. Follow that Red Planet, as we’re now only one opposition away from a spectacular apparition in 2018 that will rival the historic appearance of Mars back in 2003. Will the “Super Mars hoax’ once again rear its ugly head? The optimal window to launch spacecraft to Mars is coming right up, and the European Space Agency’s Exomars Trace Gas Orbiter and Schiaparelli Lander launches on a Proton rocket from the Baikonur Cosmodrome on March 14th. Unfortunately, NASA’s InSight lander won’t make the trip this time ’round, opting instead to make the journey in 2018.

And finally, keep an eye on Mercury, as it transits the Sun just one-half orbit from now on May 9th. And hey, we’re only three weeks away from the start of the first eclipse season of 2016, with the year’s only total solar eclipse of 2016 gracing southeast Asia.

Finally, we’re currently globe-trotting, but we managed to grab a very modest image of Venus and the waning crescent Moon with our Android phone during an early morning jog in Chiefland, Florida:

Quick smartphone capture of the Moon and Venus on this AM’s jog in Chiefland, #Florida –

A photo posted by David Dickinson (@astro_guyz) on Feb 6, 2016 at 5:06am PST

Keep an eye on all the 2016 planetary action, coming to a (hopefully dark) sky near you.

The post Stunning Images of the February Dawn Planetary Line-up from Around the World appeared first on Universe Today.