Did We Arrive Early To The Universe’s Life Party?

Artist's impression of an exoplanet orbiting a low-mass star. Credit: ESO/L. Calçada

The Fermi Paradox essentially states that given the age of the Universe, and the sheer number of stars in it, there really ought to be evidence of intelligent life out there. This argument is based in part on the fact that there is a large gap between the age of the Universe (13.8 billion years) and the age of our Solar System (4.5 billion years ago). Surely, in that intervening 9.3 billion years, life has had plenty of time to evolve in other star system!

However, new theoretical work performed by researchers from the Harvard-Smithsonian Center for Astrophysics (CfA) offers a different take on Fermi’s Paradox. According to their study, which will appear soon in the Journal of Cosmology and Astrophysics, they argue that life as we know it may have been a bit premature to the whole “intelligence party”, at least from a cosmological perspective.

For the sake of their study, titled “Relative Likelihood for Life as a Function of Cosmic Time“, the team calculated the likelihood of Earth-like planets forming within our Universe, starting from when the first stars formed (30 million years ago) and continuing into the distant future. What they found was, barring any unforeseen restrictions, life as we know is determined by the mass of a star.

As Avi Loeb – a scientists with the Harvard-Smithsonian Center for Astrophysics and the lead author on the paper – explained in a CfA press release:

“If you ask, ‘When is life most likely to emerge?’ you might naively say, ‘Now’. But we find that the chance of life grows much higher in the distant future. So then you may ask, why aren’t we living in the future next to a low-mass star? One possibility is we’re premature. Another possibility is that the environment around a low-mass star is hazardous to life.”

Essentially, higher-mass stars – i.e. those that have three or more times the mass of our Sun – have a shorter life-span, which means that they will likely die before life has a chance to form on a planet orbiting them. Lower mass stars, which are a class of red dwarfs that have 0.1 Solar masses, have much longer lifespans, with some astrophysical models indicating that they may stay in their main sequence phase for six to twelve trillion years.

In other words, the probability of life existing in our Universe grows over time. For the sake of their study, Loeb and his colleagues concluded that certain red dwarfs that are in their main sequence today could likely live for another 10 trillion years. By this time, the probability that life will have developed on some of their planets increased by a factor of 1000 over what it is today.

Hence, we could say that life as we know it – i.e. carbon-based organisms that evolved on Earth over the course of billions of years – emerged early in terms of cosmic history, rather than late. This might explain why it is that we haven’t found any evidence of intelligent life yet – maybe it just hasn’t had enough time to emerge. It’s certainly a better prospect than the possibility that they were killed off during the early phases of their star’s evolution (as other researchers have suggested).

However, as Dr. Loeb explained, the team also determined that there was an alternative to this hypothesis, which has to do with the particular risks faced by plants that form around low-mass stars. For instance, low-mass stars emit strong flares of UV radiation in their early life, which could adversely effect any planet orbiting it by stripping away its atmosphere.

So, in addition to life being premature on Earth, its possible that life on other planets is being wiped out before they have a chance to reach maturity. Ultimately, the only way to know for sure which possibility is correct is to continue hunting for Earth-like exoplanets and conducting spectroscopic searches of their atmospheres for biosignatures.

In this respect, missions like the Transiting Exoplanet Survey Satellite (TESS) and the James Webb Space Telescope will have their work cut out for them! Loeb also published a similar study titled “On the Habitability of Our Universe” as a preface for an upcoming book on the subject.

The Harvard-Smithsonian Center for Astrophysics, located in Cambridge, Massachusetts, is a joint collaboration between the Smithsonian Astrophysical Observatory and the Harvard College Observatory. It’s scientists are dedicating to studying the origin, evolution and future of the universe.

Further Reading: CFA, arXiv

The post Did We Arrive Early To The Universe’s Life Party? appeared first on Universe Today.

Why Haven’t We Heard From All The Aliens? Because They’re All Dead!

Illustration of Kepler-186f, a recently-discovered, possibly Earthlike exoplanet that could be a host to life. (NASA Ames, SETI Institute, JPL-Caltech, T. Pyle)

In 1950, physicist Enrico Fermi raised a very important question about the Universe and the existence of extra-terrestrial life. Given the size and age of the Universe, he stated, and the statistical probability of life emerging in other solar systems, why is it that humanity has not seen any indications of intelligence life in the cosmos? This query, known as the Fermi Paradox, continues to haunt us to this day.

If, indeed, there are billions of star systems in our galaxy, and the conditions needed for life are not so rare, then where are all the aliens? According to a recent paper by researchers at Australian National University’s Research School of Earth Sciences., the answer may be simple: they’re all dead. In what the research teams calls the “Gaian Bottleneck”, the solution to this paradox may be that life is so fragile that most of it simply doesn’t make it.

To put this in perspective, let’s first consider some of the numbers. As of the penning of this article, scientists have discovered a total of 2049 planets in 1297 planetary systems, including 507 multiple planetary systems. In addition, a report issued in 2013 by the Proceedings of the National Academy of Sciences of the USA indicated that, based on Kepler mission data, there could be as many as 40 billion Earth-sized planets orbiting in the habitable zones of Sun-like stars and red dwarfs within the Milky Way, and that 11 billion of these may be orbiting Sun-like stars.

So really, there should be no shortage of alien civilizations out there. And given that some scientists estimate that our galaxy is 16 billion years old, there’s been no shortage of time for some of that life to evolve and crate all the necessary technology to reach out and find us. But according to Dr Aditya Chopra, the lead author on the ANU paper, one needs take into account that the evolutionary process is filled with its share of hurdles.

“Early life is fragile, so we believe it rarely evolves quickly enough to survive,” he says. “Most early planetary environments are unstable. To produce a habitable planet, life forms need to regulate greenhouse gases such as water and carbon dioxide to keep surface temperatures stable.”

Consider our Solar System. We all know that planet Earth has all the right elements to give rise to life as we know it. It sits within the Sun’s so-called “Goldilocks Zone” (aka. habitable zone), it has liquid water on its surface, an atmosphere, and a magnetosphere to protect this atmosphere and ensure that life on the surface isn’t exposed to too much radiation. As such, Earth is the only place in our Solar System where life is known to thrive.

But what about Venus and Mars? Both of these planets sit within the Sun’s Goldilocks Zone and are believed to have had microbial life on them at one time. But roughly 3 billion years ago, when life on Earth was beginning to convert the Earth’s primordial atmosphere by producing oxygen, Venus and Mars both underwent cataclysmic change.

Whereas Venus experienced a runaway Greenhouse Effect and became the hot, hostile world it is today, Mars lost its atmosphere and surface water and became the cold, desiccated place it is today. So whereas Earth’s microbial life played a key role in stabilizing our environment, any lifeforms on Venus and Mars would have been wiped out by the sudden temperature extremes.

https://youtu.be/k9uAPAezbis

In other words, when considering the likelihood of life in the cosmos, we need to look beyond the mere statistics and consider whether or not it may come down to an “emergence bottleneck”. Essentially, those planets where lifeforms fail to emerge quickly enough, thus stabilizing the planet and paving the way for more life, will be doomed to remain uninhabited.

In their report, “The Case for a Gaian Bottleneck: The Biology of Habitability” – which appears in the first issue of Astrobiology for 2016 – Dr. Chopra and his associates summarize their argument as follows:

If life emerges on a planet, it only rarely evolves quickly enough to regulate greenhouse gases and albedo, thereby maintaining surface temperatures compatible with liquid water and habitability. Such a Gaian bottleneck suggests that (i) extinction is the cosmic default for most life that has ever emerged on the surfaces of wet rocky planets in the Universe and (ii) rocky planets need to be inhabited to remain habitable.

While potentially depressing, this theory does offer a resolution to the Fermi Paradox. Given the sheer number of warm, wet terrestrial planets in the Milky Way Galaxy, there ought to be at least a few thousand civilizations kicking around. And of those, surely there are a few who have climbed their way up the Kardashev Scale and built something like a Dyson Sphere, or at least some flying saucers!

And yet, not only have we not detected any signs of life in other solar systems, but the Search for Extra Terrestrial Intelligence (SETI) hasn’t detecting any radio waves from other star systems since its inception. The only possible explanations for this are that either life is far more rare than we think, or that we aren’t looking in the right places. In the former case, an emergence bottleneck may be the reason why life has been so hard to find.

But if the latter possibility should be the case, it means our methodology needs to change. So far, all of our searches have been for the “low-hanging fruit” of alien life – looking for signs of it on warm, watery planets like our own. Perhaps life does exist out there, but in more complex and exotic forms that we have yet to consider.  Or, as is often suggested, it is possible that extra-terrestrial life is taking great pains to avoid us.

Regardless, Fermi’s Paradox has endured for over 50 years, and will continue to endure until such time that we make contact with an extra-terrestrial civilization. In the meantime, all we can do is speculate. To quote Arthur C. Clarke, “Two possibilities exist: either we are alone in the Universe or we are not. Both are equally terrifying.”

Further Reading: ANU, Astrobiology

The post Why Haven’t We Heard From All The Aliens? Because They’re All Dead! appeared first on Universe Today.

Beyond “Fermi’s Paradox” II: Questioning the Hart-Tipler Conjecture

It’s become a legend of the space age. The brilliant physicist Enrico Fermi, during a lunchtime conversation at Los Alamos National Laboratory in 1950, is supposed to have posed a conundrum for proponents of the existence of extraterrestrial civilizations. If space traveling aliens exist, so the argument goes, they would spread through the galaxy, colonizing […]

Beyond “Fermi’s Paradox” I: A Lunchtime Conversation- Enrico Fermi and Extraterrestrial Intelligence

It’s become a kind of legend, like Newton and the apple or George Washington and the cherry tree. One day in 1950, the great physicist Enrico Fermi sat down to lunch with colleagues at the Fuller Lodge at Los Alamos National Laboratory in New Mexico and came up with a powerful argument about the existence […]