Icy Hot: Europa’s Frozen Crust Could Be Warmer Than We Thought

Europa's cracked, icy surface imaged by NASA's Galileo spacecraft in 1998. Credit: NASA/JPL-Caltech/SETI Institute.

All the worlds may be ours except Europa but that only makes the ice-covered moon of Jupiter all the more intriguing. Beneath Europa’s thin crust of ice lies a tantalizing global ocean of liquid water somewhere in the neighborhood of 100 kilometers deep—which adds up to more liquid water than is on the entire surface of the Earth. Liquid water plus a heat source(s) to keep it liquid plus the organic compounds necessary for life and…well, you know where the thought process naturally goes from there.

And now it turns out Europa may have even more of a heat source than we thought. Yes, a big component of Europa’s water-liquefying warmth comes from tidal stresses enacted by the massive gravity of Jupiter as well as from the other large Galilean moons. But exactly how much heat is created within the moon’s icy crust as it flexes has so far only been loosely estimated. Now, researchers from Brown University in Providence, RI and Columbia University in New York City have modeled how friction creates heat within ice under stress, and the results were surprising.

Although 3,100-km-wide Europa is coated in ice and technically has the smoothest surface in the Solar System, it’s far from featureless. Its frozen crust features enormous regions of broken “chaos terrain”  and is covered in long, crisscrossing fractures filled with reddish-brown material (which may be a form of sea salt), as well as crumpled, mountain-like ridges that appear curiously fresh.

These ridges are thought to be a result of a form of tectonics, except not with plates of rock like on Earth but rather shifting slabs of frozen water. But where the energy needed to drive that process is coming from—and what happens to all the frictional heat created during it—isn’t well known.

“People have been using simple mechanical models to describe the ice,” said geophysicist Christine McCarthy, Lamont Assistant Research Professor at Columbia University who led the research while a graduate student at Brown University. “They weren’t getting the kinds of heat fluxes that would create these tectonics. So we ran some experiments to try to understand this process better.”

By mechanically subjecting ice samples to various forms of pressure and stress, similar to the conditions that would be found on Europa as it orbits Jupiter, the researchers found that most of the heat is generated within deformities in the ice, rather than between the individual grains as was previously thought. This difference means there’s likely a lot more heat moving through Europa’s ice layers, which would affect both its behavior and its thickness.

“Those physics are first order in understanding the thickness of Europa’s shell,” said Reid Cooper, Earth science professor and McCarthy’s research partner at Brown. “In turn, the thickness of the shell relative to the bulk chemistry of the moon is important in understanding the chemistry of that ocean. And if you’re looking for life, then the chemistry of the ocean is a big deal.”

When it comes to Europa’s icy crust there have traditionally been two camps of thought: the thin-icers and the thick-icers. Thin-icers estimate the moon’s crust to be at most only a few kilometers thick—possibly coming very close to the surface in places, if not breaking through entirely—while those in the thick-ice camp think it could be tens of times thicker. While there are data to support both hypotheses, it remains to be seen which these new findings will best support.

Luckily we won’t have to wait terribly long to find out how thick the moon’s icy crust really is. A recently-approved NASA mission will launch to Europa in the 2020s to explore its surface, interior composition, and potential habitability. The mission may (i.e., should) also include a lander, although of what fashion has yet to be determined. But when the data from that mission do finally come in, many of our long-standing questions about this mystifying icy world will finally be answered.

The team’s research is published in the June 1 issue of Earth and Planetary Science Letters.

Source: PhysOrg.com 

The post Icy Hot: Europa’s Frozen Crust Could Be Warmer Than We Thought appeared first on Universe Today.

Does Antarctica Have A Hidden Layer Of Meteorites Below Its Surface?

Dr. Barbara Cohen is seen with a large meteorite from the Antarctic's Miller Range. Credit: Antarctic Search for Meteorites

In the category of now-why-didn’t-I think-of-that ideas, Dr. Geoffrey Evatt and colleagues from the University of Manchester struck upon a brilliant hypothesis: that a layer of iron meteories might lurk just below the surface of the Antarctic ice. He’s the lead  author of a recent paper on the topic published in the open-access journal, Nature Communications.

Remote Antarctica makes one of the best meteorite collecting regions on the planet. Space rocks have been accumulating there for millennia preserved in the continent’s cold, desert-like climate. While you might think it’s a long and expensive way to go to hunt for meteorites, it’s still a lot cheaper than a sample return mission to the asteroid belt. Meteorites fall and become embedded in ice sheets within the continent’s interior. As that ice flows outward toward the Antarctic coastlines, it pushes up against the Transantarctic Mountains, where powerful, dry winds ablate away the ice and expose their otherworldly cargo.

Layer after layer, century after century, the ice gets stripped away, leaving rich “meteorite stranding zones” where hundreds of space rocks can be found within an area the size of a soccer field. Since most meteorites arrive on Earth coated in a black or brown fusion crust from their searing fall through the atmosphere, they contrast well against the white glare of snow and ice. Scientists liken it to a conveyor belt that’s been operating for the past couple million years.

Scientists form snowmobile posses and buzz around the ice fields picking them up like candy eggs on Easter morning. OK, it’s not that easy. There’s much planning and prep followed by days and nights of camping in bitter cold with tents lashed by occasional high winds. Expeditions take place from October through early January when the Sun never sets.

The U.S. under ANSMET (Antarctic Search for Meteorites, a Case Western Reserve University project funded by NASA), China, Japan and other nations run programs to hunt and collect the precious from the earliest days of the Solar System before they find their way to the ocean or are turned to dust by the very winds that revealed them in the first place. Since systematic collecting began in 1976, some 34,927 meteorites have been recovered from Antarctica as of December 2015.

Meteorites come in three basic types: those made primarily of rock; stony-irons comprised of a mixture of iron and rock; and iron-rich. Since collection programs have been underway, Antarctic researchers have uncovered lots of stony meteorites, but meteorites either partly or wholly made of metal are scarce compared to what’s found in other collecting sites around the world, notably the deserts of Africa and Oman. What gives?

Dr. Evatt and colleagues had a hunch and performed a simple experiment to arrive at their hypothesis. They froze two meteorites of similar size and shape — a specimen of the Russian Sikhote-Alin iron and NWA 869, an ordinary (stony) chondrite  — inside blocks of ice and heated them using a solar-simulator lamp. As expected, both meteorites melted their way down through the ice in time, but the iron meteorite sank further and  faster. I bet you can guess why. Iron or metal conducts heat more efficiently than rock. Grab a metal camera tripod leg or telescope tube on a bitter cold night and you’ll know exactly what I mean. Metal conducts the heat away from your hand far better and faster than say, a piece of wood or plastic.

The researchers performed many trials with the same results and created a mathematical model showing that Sun-driven burrowing during the six months of Antarctic summer accounted nicely for the lack of iron meteorites seen in the stranding zones. Co-author Dr. Katherine Joy estimates that the fugitive meteorites are trapped between about 20-40 inches (50-100 cm) beneath the ice.

You can imagine how hard it would be to dig meteorites out of Antarctic ice. It’s work enough to mount an expedition to pick up just what’s on the surface.

With the gauntlet now thrown down, who will take up the challenge? The researchers suggests metal detectors and radar to help locate the hidden irons. Every rock delivered to Earth from outer space represents a tiny piece of a great puzzle astronomers, chemists and geologist have been assembling since 1794 when German physicist Ernst Chladni published a small book asserting that rocks from space really do fall from the sky.

Like the puzzle we leave unfinished on the tabletop, we have a picture, still incomplete, of a Solar System fashioned from the tiniest of dust motes in the crucible of gravity and time.

 

The post Does Antarctica Have A Hidden Layer Of Meteorites Below Its Surface? appeared first on Universe Today.

What’s Up With Ceres’ Mysterious Bright Spots? Reply Hazy, Ask Again Later

The crater that contains those puzzlingly bright spots on Ceres may harbor an equally puzzling haze. Or not. The hints of haze on the dwarf planet, seen in some of the images coming from NASA’s Dawn spacecraft, add another intriguing twist to Ceres’ mysteries. (…)Read the rest of What’s Up With Ceres’ Mysterious Bright Spots? Reply Hazy, Ask Again […]

Rosetta’s Comet Sparkles with Ice, Blows Dust From Sinkholes

Comet 67P/C-G may be tiny at just 2.5 miles (4 km) across, but its diverse landscapes and the processes that shape them astound. To say nature packs a lot into small packages is an understatement. In newly-released images taken by Rosetta’s high-resolution OSIRIS science camera, the comet almost seems alive. Sunlight glints off icy boulders and pancaking sinkholes […]

Ceres Has Lots of Bright Spots

Those bright mystery spots aren’t the only ones on Ceres. Recent photos posted on JPL’s Photojournal site  feature a spectacular rayed crater resembling the familiar lunar craters Kepler and Copernicus. (…)Read the rest of Ceres Has Lots of Bright Spots (396 words) © Bob King for Universe Today, 2015. | Permalink | No comment | Post tags: bright […]

Latest Research Reveals a Bizarre and Vibrant Rosetta’s Comet

We’ve subsisted for months on morsels of information coming from ESA’s mission to Comet 67P/Churyumov-Gerasimenko. Now, a series of scientific papers in journal Science offers a much more complete, if preliminary, look at Rosetta’s comet. And what a wonderful and complex world it is.(…)Read the rest of Latest Research Reveals a Bizarre and Vibrant Rosetta’s Comet (1,696 words) © Bob […]

Get a Change of View of Mercury’s North Pole

It’s always good to get a little change of perspective, and with this image we achieve just that: it’s a view of Mercury’s north pole projected as it might be seen from above a slightly more southerly latitude. Thanks to the MESSENGER spacecraft, with which this image was originally acquired, as well as the Arecibo Observatory here on […]

Philae Lander Early Science Results: Ice, Organic Molecules and Half a Foot of Dust

An uncontrolled, chaotic landing.  Stuck in the shadow of a cliff without energy-giving sunlight.  Philae and team persevered.  With just 60 hours of battery power, the lander drilled, hammered and gathered science data on the surface of comet 67P/Churyumov-Gerasimenko before going into hibernation. Here’s what we know. (…)Read the rest of Philae Lander Early Science Results: Ice, […]