Trump Proposes $19.1 Billion 2018 NASA Budget, Cuts Earth Science and Education

The Trump Administration has proposed a $19.1 Billion NASA budget request for Fiscal Year 2018, which amounts to a $0.5 Billion reduction compared to the recently enacted FY 2017 NASA Budget. Although it maintains many programs, the budget also specifies significant cuts and terminations to NASA’s Earth Science and manned Asteroid redirect mission as well as the complete elimination of the Education Office.

The post Trump Proposes $19.1 Billion 2018 NASA Budget, Cuts Earth Science and Education appeared first on Universe Today.

NASA Webb Telescope Resumes Rigorous Vibration Qualification Tests

Engineers have resumed a series of critical and rigorous vibration qualification tests on NASA’s mammoth James Webb Space Telescope (JWST) at NASA’s Goddard Space Flight Center, in Greenbelt, Maryland to confirm its safety, integrity and readiness for the unforgiving environment of space flight.

The post NASA Webb Telescope Resumes Rigorous Vibration Qualification Tests appeared first on Universe Today.

NASA Webb Telescope Structure is Sound After Vibration Testing Detects Anomaly

NASA GODDARD SPACE FLIGHT CENTER, MD – The James Webb Space Telescope (JWST) is now deemed “sound” and apparently unscathed, engineers have concluded, based on results from a new batch of intensive inspections of the observatory’s structure, after concerns were raised in early December when technicians initially detected “anomalous readings” during a preplanned series of vibration tests, NASA announced Dec. 23.

The post NASA Webb Telescope Structure is Sound After Vibration Testing Detects Anomaly appeared first on Universe Today.

Weekly Space Hangout – December 23, 2016: Mathew Anderson’s “Our Cosmic Story”

Host: Fraser Cain (@fcain) Special Guest: Mathew Anderson is the author of “”Our Cosmic Story”” available on Amazon in January, 2017. He wrote “”Our Cosmic Story”” in interest from his years studying science giants like Brian Greene, Neil deGrasse Tyson, Richard Dawkins, and from past figures like Carl Sagan. This book is a big picture […]

The post Weekly Space Hangout – December 23, 2016: Mathew Anderson’s “Our Cosmic Story” appeared first on Universe Today.

Weekly Space Hangout – October 7, 2016: Paul Geithner of the JWST

Host: Fraser Cain (@fcain) Special Guest: Paul Geithner, Deputy Project Manager – Technical for the James Webb Space Telescope (JWST) at NASA’s Goddard Space Flight Center. Guests: Kimberly Cartier ( KimberlyCartier.org / @AstroKimCartier ) Paul M. Sutter (pmsutter.com / @PaulMattSutter) Nicole Gugliucci (cosmoquest.org / @noisyastronomer) Their stories this week: MAVEN’s One Year Anniversary Giant plasma […]

The post Weekly Space Hangout – October 7, 2016: Paul Geithner of the JWST appeared first on Universe Today.

Did We Arrive Early To The Universe’s Life Party?

Artist's impression of an exoplanet orbiting a low-mass star. Credit: ESO/L. Calçada

The Fermi Paradox essentially states that given the age of the Universe, and the sheer number of stars in it, there really ought to be evidence of intelligent life out there. This argument is based in part on the fact that there is a large gap between the age of the Universe (13.8 billion years) and the age of our Solar System (4.5 billion years ago). Surely, in that intervening 9.3 billion years, life has had plenty of time to evolve in other star system!

However, new theoretical work performed by researchers from the Harvard-Smithsonian Center for Astrophysics (CfA) offers a different take on Fermi’s Paradox. According to their study, which will appear soon in the Journal of Cosmology and Astrophysics, they argue that life as we know it may have been a bit premature to the whole “intelligence party”, at least from a cosmological perspective.

For the sake of their study, titled “Relative Likelihood for Life as a Function of Cosmic Time“, the team calculated the likelihood of Earth-like planets forming within our Universe, starting from when the first stars formed (30 million years ago) and continuing into the distant future. What they found was, barring any unforeseen restrictions, life as we know is determined by the mass of a star.

As Avi Loeb – a scientists with the Harvard-Smithsonian Center for Astrophysics and the lead author on the paper – explained in a CfA press release:

“If you ask, ‘When is life most likely to emerge?’ you might naively say, ‘Now’. But we find that the chance of life grows much higher in the distant future. So then you may ask, why aren’t we living in the future next to a low-mass star? One possibility is we’re premature. Another possibility is that the environment around a low-mass star is hazardous to life.”

Essentially, higher-mass stars – i.e. those that have three or more times the mass of our Sun – have a shorter life-span, which means that they will likely die before life has a chance to form on a planet orbiting them. Lower mass stars, which are a class of red dwarfs that have 0.1 Solar masses, have much longer lifespans, with some astrophysical models indicating that they may stay in their main sequence phase for six to twelve trillion years.

In other words, the probability of life existing in our Universe grows over time. For the sake of their study, Loeb and his colleagues concluded that certain red dwarfs that are in their main sequence today could likely live for another 10 trillion years. By this time, the probability that life will have developed on some of their planets increased by a factor of 1000 over what it is today.

Hence, we could say that life as we know it – i.e. carbon-based organisms that evolved on Earth over the course of billions of years – emerged early in terms of cosmic history, rather than late. This might explain why it is that we haven’t found any evidence of intelligent life yet – maybe it just hasn’t had enough time to emerge. It’s certainly a better prospect than the possibility that they were killed off during the early phases of their star’s evolution (as other researchers have suggested).

However, as Dr. Loeb explained, the team also determined that there was an alternative to this hypothesis, which has to do with the particular risks faced by plants that form around low-mass stars. For instance, low-mass stars emit strong flares of UV radiation in their early life, which could adversely effect any planet orbiting it by stripping away its atmosphere.

So, in addition to life being premature on Earth, its possible that life on other planets is being wiped out before they have a chance to reach maturity. Ultimately, the only way to know for sure which possibility is correct is to continue hunting for Earth-like exoplanets and conducting spectroscopic searches of their atmospheres for biosignatures.

In this respect, missions like the Transiting Exoplanet Survey Satellite (TESS) and the James Webb Space Telescope will have their work cut out for them! Loeb also published a similar study titled “On the Habitability of Our Universe” as a preface for an upcoming book on the subject.

The Harvard-Smithsonian Center for Astrophysics, located in Cambridge, Massachusetts, is a joint collaboration between the Smithsonian Astrophysical Observatory and the Harvard College Observatory. It’s scientists are dedicating to studying the origin, evolution and future of the universe.

Further Reading: CFA, arXiv

The post Did We Arrive Early To The Universe’s Life Party? appeared first on Universe Today.

Webb Telescope Gets its Science Instruments Installed

In this rare view, the James Webb Space Telescope team crane lifted the science instrument package for installation into the telescope structure.  Credits: NASA/Chris Gunn

The package of powerful science instruments at the heart of NASA’s mammoth James Webb Space Telescope (JWST) have been successfully installed into the telescopes structure.

A team of two dozen engineers and technicians working with “surgical precision” inside the world’s largest clean room at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, meticulously guided the instrument package known as the ISIM (Integrated Science Instrument Module) into the telescope truss structure.

The ISIM holds the observatory’s international quartet of state-of-the-art research instruments, funded, built and provided by research teams in the US, Canada and Europe.

“This is a tremendous accomplishment for our worldwide team,” said John Mather, James Webb Space Telescope Project Scientist and Nobel Laureate, in a statement.

“There are vital instruments in this package from Europe and Canada as well as the US and we are so proud that everything is working so beautifully, 20 years after we started designing our observatory.”

Just as with the mirrors installation and other assembly tasks, the technicians practiced the crucial ISIM installation procedure numerous times via test runs, computer modeling and a mock-up of the instrument package.

“Our personnel were navigating a very tight space with very valuable hardware,” said Jamie Dunn, ISIM Manager.

“We needed the room to be quiet so if someone said something we would be able to hear them. You listen not only for what other people say, but to hear if something doesn’t sound right.”

The ISIM installation continues the excellently executed final assembly phase of Webb at Goddard this year. And comes just weeks after workers finished installing the entire mirror system.

This author has witnessed and reported on the assembly progress at Goddard on numerous occasions.

ISIM is a collection of cameras and spectrographs that will record the light collected by Webb’s giant golden primary mirror.

The primary mirror is comprised of 18 hexagonal segments.

Each of the 18 hexagonal-shaped primary mirror segments measures just over 4.2 feet (1.3 meters) across and weighs approximately 88 pounds (40 kilograms). They are made of beryllium, gold coated and about the size of a coffee table.

Webb’s golden mirror structure was tilted up for a very brief period on May 4 as seen in this NASA time-lapse video:

https://youtu.be/3LdZ_NftIh8

The 18-segment primary mirror of NASA’s James Webb Space Telescope was raised into vertical alignment in the largest clean room at the agency’s Goddard Space Flight Center in Greenbelt, Maryland, on May 4, 2016. Credit: NASA

The gargantuan observatory will significantly exceed the light gathering power of NASA’s Hubble Space Telescope (HST) – currently the most powerful space telescope ever sent to space.

With the mirror structure complete, the next step was the ISIM science module installation.

To accomplish that installation, technicians carefully moved the Webb mirror structure into the clean room gantry structure.

As shown in this time-lapse video we created from Webbcam images, they tilted the structure vertically, flipped it around, lowered it back down horizontally and then transported it via an overhead crane into the work platform.

https://youtu.be/8T67ZZj9vLM

Time-lapse showing the uncovered 18-segment primary mirror of NASA’s James Webb Space Telescope being raised into vertical position, flipped and lowered upside down to horizontal position and then moved to processing gantry in the largest clean room at the agency’s Goddard Space Flight Center in Greenbelt, Maryland, on May 4/5, 2016. Images: NASA Webbcam. Time-lapse by Ken Kremer/kenkremer.com/Alex Polimeni

The telescope will launch on an Ariane V booster from the Guiana Space Center in Kourou, French Guiana in 2018.

The Webb Telescope is a joint international collaborative project between NASA, the European Space Agency (ESA) and the Canadian Space Agency (CSA).

Webb is designed to look at the first light of the Universe and will be able to peer back in time to when the first stars and first galaxies were forming. It will also study the history of our universe and the formation of our solar system as well as other solar systems and exoplanets, some of which may be capable of supporting life on planets similar to Earth.

Watch this space for my ongoing reports on JWST mirrors, science, construction and testing.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

The post Webb Telescope Gets its Science Instruments Installed appeared first on Universe Today.

Unveiled Webb Telescope Mirrors Mesmerize in ‘Golden’ Glory

All 18 gold coated primary mirrors of NASA’s James Webb Space Telescope are seen fully unveiled after removal of protective covers installed onto the backplane structure, as technicians work inside the massive clean room at NASA's Goddard Space Flight Center in Greenbelt, Maryland on May 3, 2016.  The secondary mirror mount booms are folded down into stowed for launch configuration. Credit: Ken Kremer/kenkremer.com

NASA GODDARD SPACE FLIGHT CENTER, MD – It’s Mesmerizing ! That’s the overwhelming feeling expressed among the fortunate few setting their own eyeballs on the newly exposed golden primary mirror at the heart of NASA’s mammoth James Webb Space Telescope (JWST) – a sentiment shared by the team building the one-of-its-kind observatory and myself during a visit this week by Universe Today.

“The telescope is cup up now [concave]. So you see it in all its glory!” said John Durning, Webb Telescope Deputy Project Manager, in an exclusive interview with Universe Today at NASA’s Goddard Space Flight Center on Tuesday, May 3, after the covers were carefully removed just days ago from all 18 primary mirror segments and the structure was temporarily pointed face up.

“The entire mirror system is checked out, integrated and the alignment has been checked.”

It’s a banner year for JWST at Goddard where the engineers and technicians are well into the final assembly and integration phase of the optical and science instrument portion of the colossal observatory that will revolutionize our understanding of the cosmos and our place it in. And they are moving along at a rapid pace.

JWST is the scientific successor to NASA’s 25 year old Hubble Space Telescope. It will become the biggest and most powerful space telescope ever built by humankind after it launches 30 months from now.

The flight structure for the backplane assembly truss that holds the mirrors and science instruments arrived at Goddard last August from Webb prime contractor Northrop Grumman Aerospace Systems in Redondo Beach, California.

The painstaking assembly work to piece together the 6.5 meter diameter primary mirror began just before the Thanksgiving 2015 holiday, when the first unit was successfully installed onto the central segment of the mirror holding backplane assembly.

Technicians from Goddard and J.D. Harris then methodically populated the backplane assembly one-by-one, sequentially installing the last primary mirror segment in February followed by the single secondary mirror at the top of the massive trio of mirror mount booms and the tertiary and steering mirrors inside the Aft Optics System (AOS).

Everything proceeded according to the meticulously choreographed schedule.

“The mirror installation went exceeding well,” Durning told Universe Today.

“We have maintained our schedule the entire time for installing all 18 primary mirror segments. Then the center section, which is the cone in the center, comprising the Aft Optics System (AOS). We installed that two months ago. It went exceedingly well.”

The flight structure and backplane assembly serve as the $8.6 Billion Webb telescopes backbone.

The next step is to install the observatory’s quartet of state-of-the-art research instruments, a package known as the ISIM (Integrated Science Instrument Module), in the truss structure over the next few weeks.

“The telescope is fully integrated and we are now doing the final touches to get prepared to accept the instrument pack which will start happening later this week,” Durning explained.

The integrated optical mirror system and ISIM form Webb’s optical train.

“So we are just now creating the new integration entity called OTIS – which is a combination of the OTE (Optical Telescope Assembly) and the ISIM (Integrated Science Instrument Module) together.”

“That’s essentially the entire optical train of the observatory!” Durning stated.

“It’s the critical photon path for the system. So we will have that integrated over the next few weeks.”

The combined OTIS entity of mirrors, science module and backplane truss weighs 8786 lbs (3940 kg) and measures 28’3” (8.6m) x 8”5” (2.6 m) x 7”10“ (2.4 m).

After OTIS is fully integrated, engineers and technicians will spend the rest of the year exposing it to environmental testing, adding the thermal blanketry and testing the optical train – before shipping the huge structure to NASA’s John Space Center.

“Then we will send it to NASA’s Johnson Space Center (JSC) early next year to do some cryovac testing, and the post environmental test verification of the optical system,” During elaborated.

“In the meantime Northrup Grumman is finishing the fabrication of the sunshield and finishing the integration of the spacecraft components into their pieces.”

“Then late in 2017 is when the two pieces – the OTIS configuration and the sunshield configuration – come together for the first time as a full observatory. That happens at Northrup Grumman in Redondo Beach.”

Webb’s optical train is comprised of four different mirrors. We discussed the details of the mirrors, their installation, and testing.

“There are four mirror surfaces,” Durning tell me.

“We have the large primary mirror of 18 segments, the secondary mirror sitting on the tripod above it, and the center section looking like a pyramid structure [AOS] contains the tertiary mirror and the fine steering mirror.”

“The AOS comes as a complete package. That got inserted down the middle [of the primary mirror].”

Each of the 18 hexagonal-shaped primary mirror segments measures just over 4.2 feet (1.3 meters) across and weighs approximately 88 pounds (40 kilograms). They are made of beryllium, gold coated and about the size of a coffee table.

In space, the folded mirror structure will unfold into side by side sections and work together as one large 21.3-foot (6.5-meter) mirror, unprecedented in size and light gathering capability.

The lone secondary mirror sits at the top of the tripod boom over the primary.

The tertiary mirror and fine steering mirror sit in the Aft Optics System (AOS), a cone shaped unit located at the center of the primary mirror.

“So how it works is the light from the primary mirror bounces up to the secondary, and the secondary bounces down to the tertiary,” Durning explained.

“And then the tertiary – which is within that AOS structure – bounces down to the steering mirror. And then that steering mirror steers the beams of photons to the pick off mirrors that sit below in the ISIM structure.”

“So the photons go through that AOS cone. There is a mask at the top that cuts off the path so we have a fixed shape of the beam coming through.”

“It’s the tertiary mirror that directs the photons to the fine steering mirror. The fine steering mirror then directs it [the photons] to the pick off mirrors that sit below in the ISIM structure.”

So the alignment between the AOS system and the telescopes primary and secondary mirrors is incredibly critical.

“The AOS tertiary mirror catches the light [from the secondary mirror] and directs the light to the steering mirror. The requirements for alignment were just what we needed. So that was excellent progress.”

“So the entire mirror system is checked out. The system has been integrated and the alignment has been checked.”

Webb’s golden mirror structure was tilted up for a very brief period this week on May 4 as seen in this NASA time-lapse video:

https://youtu.be/3LdZ_NftIh8

The 18-segment primary mirror of NASA’s James Webb Space Telescope was raised into vertical alignment in the largest clean room at the agency’s Goddard Space Flight Center in Greenbelt, Maryland, on May 4, 2016. Credit: NASA

The gargantuan observatory will significantly exceed the light gathering power of NASA’s Hubble Space Telescope (HST) – currently the most powerful space telescope ever sent to space.

With the mirror structure complete, the next step is ISIM science module installation.

To accomplish that, technician carefully moved the Webb mirror structure this week into the clean room gantry structure.

As shown in this time-lapse video they tilted the structure vertically, flipped it around, lowered it back down horizontally and then transported it via an overhead crane into the work platform.

https://youtu.be/8T67ZZj9vLM

Time-lapse showing the uncovered 18-segment primary mirror of NASA’s James Webb Space Telescope being raised into vertical position, flipped and lowered upside down to horizontal position and then moved to processing gantry in the largest clean room at the agency’s Goddard Space Flight Center in Greenbelt, Maryland, on May 4/5, 2016. Images: NASA Time-lapse by Ken Kremer/kenkremer.com/Alex Polimeni

More about ISIM in the next story.

Watch this space for my ongoing reports on JWST mirrors, science, construction and testing.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

The post Unveiled Webb Telescope Mirrors Mesmerize in ‘Golden’ Glory appeared first on Universe Today.