Weekly Space Hangout – June 16, 2017: Dr. Natalie Batalha and NASA’s NExSS

Host: Fraser Cain (@fcain) Special Guest: Dr. Natalie Batalha is an astrophysicist at NASA Ames Research Center and project scientist for NASA’s Kepler Mission. Dr. Batalha leads the effort to understand planet populations in the galaxy based on Kepler’s discoveries, and in 2015 she joined the leadership team of NASA’s Nexus for Exoplanet System Science […]

The post Weekly Space Hangout – June 16, 2017: Dr. Natalie Batalha and NASA’s NExSS appeared first on Universe Today.

Weekly Space Hangout – April 28, 2017: Tim Blais of A Capella Science

Host: Fraser Cain (@fcain) Special Guest: Tim Blais is the founder of A Capella Science, an “educational and utterly nerdy online video project.” You can find his videos online on YouTube at A Capella Science. Guests: Jolene Creighton (fromquarkstoquasars.com / @futurism) Their stories this week: Total Eclipse of the Sun to be commemorated on a […]

The post Weekly Space Hangout – April 28, 2017: Tim Blais of A Capella Science appeared first on Universe Today.

Weekly Space Hangout – May 13, 2016: Christer Fuglesang

Host: Fraser Cain (@fcain) Special Guest: Arne Christer Fuglesang is a Swedish physicist and an ESA astronaut. He was first launched aboard the STS-116 Space Shuttle mission on December 10, 2006, making him the first Swedish citizen in space. Morgan Rehnberg (MorganRehnberg.com / @MorganRehnberg) Kimberly Cartier (@AstroKimCartier ) Their stories this week: Kepler’s planet count […]

The post Weekly Space Hangout – May 13, 2016: Christer Fuglesang appeared first on Universe Today.

Bayesian Analysis Rains On Exoplanet Life Parade

An exoplanet seen from its moon (artist's impression). Via the IAU.

Is there life on other planets, somewhere in this enormous Universe? That’s probably the most compelling question we can ask. A lot of space science and space missions are pointed directly at that question.

The Kepler mission is designed to find exoplanets, which are planets orbiting other stars. More specifically, its aim is to find planets situated in the habitable zone around their star. And it’s done so. The Kepler mission has found 297 confirmed and candidate planets that are likely in the habitable zone of their star, and it’s only looked at a tiny patch of the sky.

But we don’t know if any of them harbour life, or if Mars ever did, or if anywhere ever did. We just don’t know. But since the question of life elsewhere in the Universe is so compelling, it’s driven people with intellectual curiosity to try and compute the likelihood of life on other planets.

[embed]https://www.youtube.com/watch?v=wem9EDPr3p8[/embed]

One of the main ways people have tried to understand if life is prevalent in the Universe is through the Drake Equation, named after Dr. Frank Drake. He tried to come up with a way to compute the probability of the existence of other civilizations. The Drake Equation is a mainstay of the conversation around the existence of life in the Universe.

The Drake Equation is a way to calculate the probability of extraterrestrial civilizations in the Milky Way that were technologically advanced to communicate. When it was created in 1961, Drake himself explained that it was really just a way of starting a conversation about extraterrestrial civilizations, rather than a definitive calculation. Still, the equation is the starting point for a lot of conversations.

But the problem with the Drake equation, and with all of our attempts to understand the likelihood of life starting on other planets, is that we only have the Earth to go by. It seems like life on Earth started pretty early, and has been around for a long time. With that in mind, people have looked out into the Universe, estimated the number of planets in habitable zones, and concluded that life must be present, and even plentiful, in the Universe.

But we really only know two things: First, life on Earth began a few hundred million years after the planet was formed, when it was sufficiently cool and when there was liquid water. The second thing that we know is that a few billions of years after life started, creatures appeared which were sufficiently intelligent enough to wonder about life.

In 2012, two scientists published a paper which reminded us of this fact. David Spiegel, from Princeton University, and Edwin Turner, from the University of Tokyo, conducted what’s called a Bayesian analysis on how our understanding of the early emergence of life on Earth affects our understanding of the existence of life elsewhere.

A Bayesian analysis is a complicated matter for non-specialists, but in this paper it’s used to separate out the influence of data, and the influence of our prior beliefs, when estimating the probability of life on other worlds. What the two researchers concluded is that our prior beliefs about the existence of life elsewhere have a large effect on any probabilistic conclusions we make about life elsewhere. As the authors say in the paper, “Life arose on Earth sometime in the first few hundred million years after the young planet had cooled to the point that it could support water-based organisms on its surface. The early emergence of life on Earth has been taken as evidence that the probability of abiogenesis is high, if starting from young-Earth-like conditions.”

A key part of all this is that life may have had a head start on Earth. Since then, it’s taken about 3.5 billion years for creatures to evolve to the point where they can think about such things. So this is where we find ourselves; looking out into the Universe and searching and wondering. But it’s possible that life may take a lot longer to get going on other worlds. We just don’t know, but many of the guesses have assumed that abiogenesis on Earth is standard for other planets.

What it all boils down to, is that we only have one data point, which is life on Earth. And from that point, we have extrapolated outward, concluding hopefully that life is plentiful, and we will eventually find it. We’re certainly getting better at finding locations that should be suitable for life to arise.

What’s maddening about it all is that we just don’t know. We keep looking and searching, and developing technology to find habitable planets and identify bio-markers for life, but until we actually find life elsewhere, we still only have one data point: Earth. But Earth might be exceptional.

As Spiegel and Turner say in the conclusion of their paper, ” In short, if we should find evidence of life that arose wholly idependently of us – either via astronomical searches that reveal life on another planet or via geological and biological studies that find evidence of life on Earth with a different origin from us – we would have considerably stronger grounds to conclude that life is probably common in our galaxy.”

With our growing understanding of Mars, and with missions like the James Webb Space Telescope, we may one day soon have one more data point with which we can refine our probabilistic understanding of other life in the Universe.

Or, there could be a sadder outcome. Maybe life on Earth will perish before we ever find another living microbe on any other world.

The post Bayesian Analysis Rains On Exoplanet Life Parade appeared first on Universe Today.

Weekly Space Hangout – Apr. 15, 2016: Dr. Howard Trottier

Host: Fraser Cain (@fcain) Special Guest: Howard Trottier, a physics professor at Simon Fraser University (SFU) in British Columbia, Canada. Dr. Trottier has recently devoted his time to the development of SFU’s unique Astronomy public outreach program. In the heart of SFU’s main campus is a “”Science Courtyard,”” a high-profile public space devoted to astronomy […]

The post Weekly Space Hangout – Apr. 15, 2016: Dr. Howard Trottier appeared first on Universe Today.

Nearby Supernovas Showered Earth With Iron

Visible, infrared, and X-ray light image of Kepler's supernova remnant (SN 1604) located about 13,000 light-years away. Credit: NASA, ESA, R. Sankrit and W. Blair (Johns Hopkins University).

We all know that we are “made of star-stuff,” with all of the elements necessary for the formation of planets and even life itself having originated inside generations of massive stars, which over billions of years have blasted their creations out into the galaxy at the explosive ends of their lives. Supernovas are some of the most powerful and energetic events in the known Universe, and when a dying star finally explodes you wouldn’t want to be anywhere nearby—fresh elements are nice and all but the energy and radiation from a supernova would roast any planets within tens if not hundreds of light-years in all directions. Luckily for us we’re not in an unsafe range of any supernovas in the foreseeable future, but there was a time geologically not very long ago that these stellar explosions are thought to have occurred in nearby space… and scientists have recently found the “smoking gun” evidence at the bottom of the ocean.

Two independent teams of “deep-sea astronomers”—one led by Dieter Breitschwerdt from the Berlin Institute of Technology and the other by Anton Wallner from the Australian National University—have investigated sediment samples taken from the floors of the Pacific, Atlantic, and Indian oceans. The sediments were found to contain relatively high levels of iron-60, an isotope specifically created during a supernova.

Watch: How Quickly Does a Supernova Happen?

The teams found that the ages of the iron-60 concentrations centered around two time periods, 1.7 to 3.2 million years ago and 6.5 to 8.7 million years ago. Based on this and the fact that our Solar System currently resides within a peanut-shaped region virtually empty of interstellar gas known as the Local Bubble, the researchers are confident that this provides further evidence that supernovas exploded within a mere 330 light-years of Earth, sending their elemental fallout our way.

“This research essentially proves that certain events happened in the not-too-distant past,” said Adrian Melott, an astrophysicist and professor at the University of Kansas who was not directly involved with the research but published his take on the findings in a letter in Nature. (Source)

The researchers think that two supernova events in particular were responsible for nearly half of the iron-60 concentrations now observed. These are thought to have taken place among a a nearby group of stars known as the Scorpius–Centaurus Association, some 2.3 and 1.5 million years ago. At those same time frames Earth was entering a phase of repeated global glaciation, the end of the last of which led to the rise of modern human civilization.

While supernovas of those sizes and distances wouldn’t have been a direct danger to life here on Earth, could they have played a part in changing the climate?

Read more: Could a Faraway Supernova Threaten Earth?

“Our local research group is working on figuring out what the effects were likely to have been,” Melott said. “We really don’t know. The events weren’t close enough to cause a big mass extinction or severe effects, but not so far away that we can ignore them either. We’re trying to decide if we should expect to have seen any effects on the ground on the Earth.”

Regardless of the correlation, if any, between ice ages and supernovas, it’s important to learn how these events do affect Earth and realize that they may have played an important and perhaps overlooked role in the history of life on our planet.

“Over the past 500 million years there must have been supernovae very nearby with disastrous consequences,” said Melott. “There have been a lot of mass extinctions, but at this point we don’t have enough information to tease out the role of supernovae in them.”

You can find the teams’ papers in Nature here and here.

Sources: IOP PhysicsWorld and the University of Kansas

The post Nearby Supernovas Showered Earth With Iron appeared first on Universe Today.

Weekly Space Hangout – Mar. 25, 2016: Andrew Helton & Ryan Hamilton of SOFIA

Host: Fraser Cain (@fcain) Guests:This week, we welcome Andrew Helton and Ryan Hamilton, member of the SOFIA Telescope Team. Andrew is the Instrument Scientist for the Faint Object infraRed CAmera for the SOFIA Telescope (FORCAST) dual channel, mid-infrared camera and spectrograph, one of the observatory’s facility-class science instruments. Ryan is the Instrument Scientist for the […]

The post Weekly Space Hangout – Mar. 25, 2016: Andrew Helton & Ryan Hamilton of SOFIA appeared first on Universe Today.

Largest Rocky World Found

An illustration of a large, rocky planet similar to the recently discovered BD+20594b. Image: JPL-Caltech/NASA

We thought we understood how big rocky planets can get. But most of our understanding of planetary formation and solar system development has come from direct observation of our own Solar System. We simply couldn’t see any others, and we had no way of knowing how typical—or how strange—our own Solar System might be.

But thanks to the Kepler Spacecraft, and it’s ability to observe and collect data from other, distant, solar systems, we’ve found a rocky planet that’s bigger than we thought one could be. The planet, called BD+20594b, is half the diameter of Neptune, and composed entirely of rock.

The planet, whose existence was reported on January 28 at arXiv.org by astrophysicist Nestor Espinoza and his colleagues at the Pontifical Catholic University of Chile in Santiago, is over 500 light years away, in the constellation Aries.

BD+20594b is about 16 times as massive as Earth and half the diameter of Neptune. Its density is about 8 grams per cubic centimeter. It was first discovered in 2015 as it passed in between Kepler and its host star. Like a lot of discoveries, a little luck was involved. BD+20594b’s host star is exceptionally bright, which allowed more detailed observations than most exoplanets.

The discovery of BD+20594b is important for a couple of reasons: First, it shows us that there’s more going on in planetary formation than we thought. There’s more variety in planetary composition than we could’ve known from looking at our own Solar System. Second, comparing BD+20594b to other similar planets, like Kepler 10c—a previous candidate for largest rocky planet—gives astrophysicists an excellent laboratory for testing out our planet formation theories.

It also highlights the continuing importance of the Kepler mission, which started off just confirming the existence of exoplanets, and showing us how common they are. But with discoveries like this, Kepler is flexing its muscle, and starting to show us how our understanding of planetary formation is not as complete as we may have thought.

The post Largest Rocky World Found appeared first on Universe Today.

Do Comets Explain Mystery Star’s Bizarre Behavior?

The story of KIC 8462852 appears far from over. You’ll recall NASA’s Kepler mission had monitored the star for four years, observing two unusual incidents, in 2011 and 2013, when its light dimmed in dramatic, never-before-seen ways. Models to explain its erratic behavior were so lacking that some considered the possibility that alien megastructures built to capture […]