The Moon Is Getting Slammed Way More Than We Thought

A new study of the current rate of meteoroid impacts on the Moon suggests that those iconic astronaut boot prints we thought would be around for 2 million years may instead disappear after something like 80,000!

The post The Moon Is Getting Slammed Way More Than We Thought appeared first on Universe Today.

50 Years Ago We Got Our First Picture from the Moon

The first image from the surface of the Moon via Luna 9, Feb. 3-4, 1966. (Credit: Roscosmos)

On this date half a century ago the Soviet Luna 9 spacecraft made humanity’s first-ever soft landing on the surface of the Moon. Launched from Baikonur on Jan. 31, 1966, Luna 9 lander touched down within Oceanus Procellarum — somewhere in the neighborhood of 7.08°N, 64.37°E* — at 18:44:52 UTC on Feb. 3. The fourth successful mission in the USSR’s long-running Luna series, Luna 9 sent us our first views of the Moon’s surface from the surface and, perhaps even more importantly, confirmed that a landing by spacecraft was indeed possible.

The entire Luna 9 lander was made up of two main parts: a 1,439-kg flight/descent stage which contained retro-rockets and orientation engines, navigation systems, and various fuel tanks, and a 99-kg (218-lb) pressurized “automatic lunar station” that contained all the science and imaging instruments along with batteries, heaters, and a radio transmitter.

When a probe on the descent stage detected contact with the lunar surface, the spherical station — encased in an inflated airbag — was jettisoned to soft-land a safe distance away — after a bit of bouncing, of course; the lander hit the Moon’s surface at about 22 km/hr (13 mph)!

Once the airbag cushions deflated Luna 9, like a shiny metal flower, opened its four “petals,” extended its radio antennas and began taking panoramic television camera images of its surroundings, at the time lit by a very low Sun on the lunar horizon. Received on Earth early on Feb. 4, 1966, they were the first pictures taken from the surface of the Moon and in fact the first images acquired from the surface of another world.

Read more: What Other Worlds Have We Landed On?

Other missions, both Soviet and American, had captured close-up images of the Moon in previous years but Luna 9 was the first to soft-land (i.e., not crash land) and operate from the surface. The spacecraft continued transmitting image data to Earth until its batteries ran out on the night of Feb. 6, 1966. A total of four panoramas were acquired by Luna 9 over the course of three days, as well as data on radiation levels on the Moon’s surface (not to mention the valuable knowledge that a spacecraft wouldn’t just completely sink into the lunar regolith!)

Four months later, on June 2, 1966, NASA’s Surveyor 1 would become the first U.S. spacecraft to soft-land on the Moon. Surveyor 1 would send back science data and 11,240 photos over the course of a month in operation but, in terms of the space “race,” Luna 9 will always be remembered as first place winner.

Want to see more pictures from Luna 9 and other Soviet Moon missions? Check out Don P. Mitchell’s dedicated page here, and learn more about the Luna program on Robert Christy’s Zarya site.

Sources: NASA/NSSDC, LPI, Robert Christy/Zarya

*Or is it 7.14°N/60.36°W? Even today it’s still not precisely known where Luna 9 landed, but researchers at Arizona State University are actively searching through Lunar Reconnaissance Orbiter Camera pictures in an attempt to spot the “lost” spacecraft and/or evidence of its historic landing. Read more about that here.

 

The post 50 Years Ago We Got Our First Picture from the Moon appeared first on Universe Today.

NASA Receives Significant Budget Boost for Fiscal Year 2016

NASA’s Space Launch System (SLS) blasts off from launch pad 39B at the Kennedy Space Center in this artist rendering showing a view of the liftoff of the Block 1 70-metric-ton (77-ton) crew vehicle configuration.   Credit: NASA/MSFC

NASA has just received a significant boost in the agency’s current budget after both chambers of Congress passed the $1.1 Trillion 2016 omnibus spending bill this morning, Friday, Dec. 18, which funds the US government through the remainder of Fiscal Year 2016.

As part of the omnibus bill, NASA’s approved budget amounts to nearly $19.3 Billion – an outstandingly magnificent result and a remarkable turnaround to some long awaited good news from the decidedly negative outlook earlier this year.

This budget represents an increase of some $750 million above the Obama Administration’s proposed NASA budget allocation of $18.5 Billion for Fiscal Year 2016, and an increase of more than $1.2 Billion over the enacted budget for FY 2015.

Space enthusiasts worldwide should rejoice at this tremendously positive budget news for NASA – which enables the agency to move forward with its core agenda of human spaceflight, robotic exploration, and science and technology research and development programs.

The Federal spending bill first passed the House by an overwhelming vote of 316 to 113. It then moved to the Senate where it passed easily by a vote of 65 to 33, in one of the final acts of Congress this year before they adjourn for the Christmas holiday season. President Obama announced he will sign the bill.

After a contentious year of high states political brinkmanship that could easily have ended in another government shutdown this week, the US Congress and the Obama White House did the nearly unimaginable and decided to strike a compromise and pass the omnibus spending bill for the 2016 Fiscal Year that funds the government and NASA for the remainder of this year’s budget season through September 2015.

Committees in both chambers passed bills earlier this year with much less funding for NASA and far different space exploration priorities compared to President Obama. The outlook for the entire Federal budget changed mightily in the past two months under the new House speaker, Republican Paul Ryan who replaced outgoing Speaker John Boehner.

Under the newly passed Fiscal Year 2016 NASA Budget, virtually all of the agency’s programs benefit with either full or added funding.

The SLS, Orion, Commercial Crew and Planetary Sciences among others are all big beneficiaries of the omnibus budget compromise.

Sending humans to Mars by the 2030s is NASA’s agency-wide goal as announced by NASA Administrator Charles Bolden.

To accomplish the ‘Journey to Mars’ initiative, NASA is developing the mammoth Space Launch System (SLS) heavy lift rocket and the state of the art Orion deep space crew capsule.

The SLS is one of the bigggest winners. SLS will receive $2 Billion in the FY 2016 budget, compared to an Obama Administration request of only $1.36 billion that was actually a cut from the prior year. This new total represents a nearly 50% increase and is also above earlier House and Senate bills.

The SLS will be the most powerful rocket the world has ever seen starting with its first liftoff. It will propel our astronauts on journey’s further into space than ever before.

Blastoff of the first SLS heavy lift booster (SLS-1) carrying an unmanned test version of NASA’s Orion crew capsule is targeted for no later than November 2018.

The maiden SLS test flight with the uncrewed Orion is called Exploration Mission-1 (EM-1) and will launch from Launch Complex 39-B at the Kennedy Space Center (KSC).

The bill also directs NASA to use $85 million of the SLS funding to develop a new, enhanced cryogenic upper stage to replace the Interim Cryogenic Propulsion Stage (from the Delta IV rocket) that currently will be utilized on SLS-1.

NASA needs the enhanced upper stage to carry out future manned missions with Orion to deep space destinations like the Moon, Asteroids and Mars.

NASA had been marching towards an August 2021 liftoff for the maiden crewed Orion on a test flight dubbed Exploration Mission-2 (EM-2). But in August, the agency announced that EM-2 could slip two years from 2021 to 2023 due to a variety of budget and technical issues.

So the 2016 budget plus up could aid NASA significantly in trying to maintain the still officially targeted 2021 launch date.

NASA’s other human spaceflight pillar, namely the Commercial Crew Program (CCP) to develop a pair of human rated ‘space taxis’ to transport our astronauts to the low Earth orbit and the International Space Station (ISS) is also a big beneficiary.

The goal of CCP is to end the US sole reliance on the Russian Soyuz manned capsule at a cost of hundreds of millions of dollars and to restore the US Human spaceflight capability to launch our astronauts on American rockets from American soil.

For the first time in its five year history, CCP will receive the full funding requested by the Obama Administration – in the amount of $1.244 Billion. Whereas earlier markups by both the House and Senate had cut CCP funding to $1 Billion or below.

Under CCP awards announced by Bolden in September 2014, NASA had contracted Boeing to develop the CST-100 Starliner and SpaceX to develop the Crew Dragon.

Bolden had made it completely clear to Congress that any reduced funding would have forced NASA into slowing the program with another substantial delay in first launch now targeted for 2017, by renegotiating the CCP contracts with both Boeing and SpaceX and delaying completion of the required milestones.

“It would upend the investments we need to execute contracts with Boeing and SpaceX to return the launches of American astronauts to American soil and to do it by 2017,” wrote Bolden in his NASA blog.

NASA’a Planetary Sciences Division also gets a much earned and much needed big budget boost. The omnibus bill affords $1.631 billion for Planetary exploration. This amounts to an increase of some $270 million above the Obama administration’s request – which has repeatedly cut of one of NASA’s crown jewels.

Congress has had the good sense to save the long lived and very scientifically productive Opportunity MER rover and Lunar Reconnaissance Orbiter (LRO) missions from certain termination – due only to a ridiculous lack of money that was “zeroed out” by the White House.

The omnibus bill also appropriates $175 million for NASA planned mission to Jupiter’s moon Europa in the early 202os. It includes funding for both an orbiter and lander. Europa is a prime target in the search for life.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

The post NASA Receives Significant Budget Boost for Fiscal Year 2016 appeared first on Universe Today.

Earthrise Like You’ve Never Seen It Before

The Earth straddling the limb of the Moon, as seen from above Compton crater on the lunar farside, taken by the Lunar Reconnaissance Orbiter spacecraft. The large tan area in the upper right of Earth is the Sahara desert, and just beyond is Saudia Arabia. The Atlantic and Pacific coasts of South America are visible to the left. Credit: NASA/GSFC/Arizona State University.

Nearly 47 years ago, the crew of Apollo 8 took an image of planet Earth from the Moon that has been called “the most influential environmental photograph ever taken.” Called “Earthrise,” the picture represented the first time human eyes saw their homeworld come into view around another planetary body.

Now, the Lunar Reconnaissance Orbiter (LRO) has captured stunning new high-definition views of Earth and the Moon from the spacecraft’s vantage point in lunar orbit.

This is a composite view, with Earth appearing to rise over the horizon of the lunar farside. The image is composed from a series of pictures taken on Oct. 12, 2015 when LRO was about 83 miles (134 kilometers) above the moon’s farside Compton crater.

Taking this image was actually a complicated task for the LRO team. Mark Robinson, the principal investigator for LROC camera explained:

First the spacecraft must be rolled to the side (in this case 67°), then the spacecraft slews with the direction of travel to maximize the width of the lunar horizon in the NAC (Narrow Angle Camera) image. All this takes place while LRO is traveling over 1,600 meters per second (faster than 3,580 mph) relative to the lunar surface below the spacecraft! As a result of these three motions and the fact that the Narrow Angle Camera is a line scanner the raw image geometry is distorted. Also, because the Moon and Earth are so far apart, the geometric correction is different for each body. Reconstruction of the Earth-Moon image is not a simple matter – and that is just to get the black and white image!

Here’s a video created by the LRO Mission Operations Center showing how they planned the maneuver with a specialized spacecraft slew planning software. The vertical red line indicates the NAC line scan:

In the image, the center of the Earth just off the coast of Liberia (at 4.04 degrees North, 12.44 degrees West). The large tan area in the upper right is the Sahara Desert, and just beyond is Saudi Arabia. The Atlantic and Pacific coasts of South America are visible to the left.

The Narrow Angle Camera (NAC) on LRO takes high resolution black-and-white images, while the lower resolution Wide Angle Camera (WAC) takes color images, so the two camera images are combined (with some special processing) to create the one high-rez image.

Robinson also explained how being in orbit provides a different view from what the Apollo astronauts saw (and hopefully what future lunar explorers will see) from the lunar surface.

“From the Earth, the daily moonrise and moonset are always inspiring moments,” Robinson said. “However, lunar astronauts will see something very different: viewed from the lunar surface, the Earth never rises or sets. Since the moon is tidally locked, Earth is always in the same spot above the horizon, varying only a small amount with the slight wobble of the moon. The Earth may not move across the ‘sky’, but the view is not static. Future astronauts will see the continents rotate in and out of view and the ever-changing pattern of clouds will always catch one’s eye, at least on the nearside. The Earth is never visible from the farside; imagine a sky with no Earth or moon – what will farside explorers think with no Earth overhead?”

“The image is simply stunning,” said Noah Petro, Deputy Project Scientist for LRO. “The image of the Earth evokes the famous ‘Blue Marble’ image taken by Astronaut Harrison Schmitt during Apollo 17, 43 years ago, which also showed Africa prominently in the picture.”

NASA’s first Earthrise image was taken with the Lunar Orbiter 1 spacecraft in 1966. Below is a restored version of the image from the Lunar Orbiter Image Recovery Project. You can the original image and more info about that project here.

In 1968, the Apollo 8 crew of Frank Borman, Jim Lovell, and Bill Anders conducted a live broadcast from lunar orbit, in which they showed pictures of the Earth and Moon as seen from their spacecraft. Lovell perhaps said it best: “The vast loneliness is awe-inspiring and it makes you realize just what you have back there on Earth.”

Here is one of the images from Apollo 8:

For more information on how the LROC team created the image, see the LROC website.

The post Earthrise Like You’ve Never Seen It Before appeared first on Universe Today.

You’ve Never Seen the Phases of the Moon from This Perspective: The Far Side

Sometimes, it seems to be a cosmic misfortune that we only get to view the universe from a singular vantage point. Take the example of our single natural satellite. As the Moon waxes and wanes through its cycle of phases,  we see the familiar face of the lunar nearside. This holds true from the day we’re born […]

Here’s What it Looks Like When a Refrigerator Hits the Moon

Ever wonder what your refrigerator impacting at the speed of a tank artillery shell would do to the Moon? The Lunar Reconnaissance Orbiter’s (LRO) primary camera has provided an image of just such an event when it located the impact site of another NASA spacecraft, the Lunar Atmosphere and Dust Environment Explorer (LADEE). The fridge-sized […]