Start the Year With Spark: See the Quadrantid Meteor Shower

If one of your New Year’s resolutions is to spend more time under the stars in 2017, you’ll have motivation to do so as soon as Tuesday. That morning, the Quadrantid (kwah-DRAN-tid) meteor shower will peak between 4 to about 6 a.m. local time just before the start of dawn. This annual shower can be a rich […]

The post Start the Year With Spark: See the Quadrantid Meteor Shower appeared first on Universe Today.

Why Does Siberia Get All the Cool Meteors?

Children ice skating in Khakassia, Russia react to the fall of a bright fireball two nights ago on Dec.6 In 1908 it was Tunguska event, a meteorite exploded in mid-air, flattening 770 square miles of forest. 39 years later in 1947, 70 tons of iron meteorites pummeled the Sikhote-Alin Mountains, leaving more than 30 craters. […]

The post Why Does Siberia Get All the Cool Meteors? appeared first on Universe Today.

On The Origin Of Phobos’ Groovy Mystery

Phobos

Mars’ natural satellites – Phobos and Deimos – have been a mystery since they were first discovered. While it is widely believed that they are former asteroids that were captured by Mars’ gravity, this remains unproven. And while some of Phobos’ surface features are known to be the result of Mars’ gravity, the origin of its linear grooves and crater chains (catenae) have remained unknown.

But thanks to a new study by Erik Asphaug of Arizona State University and Michael Nayak from the University of California, we may be closer to understanding how Phobos’ got its “groovy” surface. In short, they believe that reaccretion is the answer, where all the material that was ejected when meteors impacted the moon eventually returned to strike the surface again.

Naturally, Phobos’ mysteries extend beyond its origin and surface features. For instance, despite being much more massive than its counterpart Deimos, it orbits Mars at a much closer distance (9,300 km compared to over 23,000 km). It’s density measurements have also indicated that the moon is not composed of solid rock, and it is known to be significantly porous.

Because of this proximity, it is subject to a great deal of tidal forces exerted by Mars. This causes its interior, a large portion of which is believed to consist of ice, to flex and stretch. This action, it has been theorized, is what is responsible for the stress fields that have been observed on the moon’s surface.

However, this action cannot account for another common feature on Phobos, which are the striation patterns (aka. grooves) that run perpendicular to the stress fields. These patterns are essentially chains of craters that typically measure 2o km (12 mi) in length, 100 – 200 meters (330 – 660 ft) in width, and usually 30 m (98 ft) in depth.

In the past, it was assumed that these craters were the result of the same impact that created Stickney, the largest impact crater on Phobos. However, analysis from the Mars Express mission revealed that the grooves are not related to Stickney. Instead, they are centered on Phobos’ leading edge and fade away the closer one gets to its trailing edge.

For the sake of their study, which was recently published in Nature Communications, Asphaug and Nayak used computer modelling to simulate how other meteoric impacts could have created these crater patterns, which they theorized were formed when the resulting ejecta circled back and impacted the surface in other locations.

As Dr. Asphaug told Universe Today via email, their work was the result of a meeting of minds that spawned an interesting theory:

“Dr. Nayak had been studying with Prof. Francis Nimmo (of UCSC), the idea that ejecta could swap between the Martian moons. So Mikey and I met up to talk about that, and the possibility that Phobos could sweep up its own ejecta. Originally I had been thinking that seismic events (triggered by impacts) might cause Phobos to shed material tidally, since it’s inside the Roche limit, and that this material would thin out into rings that would be reaccreted by Phobos. That still might happen, but for the prominent catenae the answer turned out to be much simpler (after a lot of painstaking computations) – that crater ejecta is faster than Phobos’ escape velocity, but much slower than Mars orbital velocity, and much of it gets swept up after several co-orbits about Mars, forming these patterns.”

Basically, they theorized that if a meteorite stuck Phobos in just the right place, the resulting debris could have been thrown off into space and swept up later as Phobos swung back around mars. Thought Phobos does not have sufficient gravity to reaccrete ejecta on its own, Mars’ gravitational pull ensures that anything thrown off by the moon will be pulled into orbit around it.

Once this debris is pulled into orbit around Mars, it will circle the planet a few times until it eventually falls into Phobos’ orbital path. When that happens, Phobos will collide with it, triggering another impact that throws off more ejecta, thus causing the whole process to repeat itself.

In the end, Asphaug and Nayak concluded that if an impact hit Phobos at a certain point, the subsequent collisions with the resulting debris would form a chain of craters in discernible patterns – possibly within days. Testing this theory required some computer modelling on an actual crater.

Using Grildrig (a 2.6 km crater near Phobos’ north pole) as an reference point, their model showed that the resulting string of craters was consistent with the chains that have been observed on Phobos’ surface. And while this remains a theory, this initial confirmation does provide a basis for further testing.

“The initial main test of the theory is that the patterns match up, ejecta from Grildrig for example.” said Asphaug. “But it’s still a theory. It has some testable implications that we’re now working on.”

In addition to offering a plausible explanation of Phobos’ surface features, their study is also significant in that it is the first time that sesquinary craters (i.e. craters caused by ejecta that went into orbit around the central planet) were traced back to their primary impacts.

In the future, this kind of process could prove to be a novel way to assess the surface characteristics of planets and other bodies – such as the heavily cratered moons of Jupiter and Saturn. These findings will also help us to learn more about Phobos history, which in turn will help shed light on the history of Mars.

“[It] expands our ability to make cross-cutting relationships on Phobos that will reveal the sequence of geologic history,” Asphaug added. “Since Phobos’ geologic history is slaved to the tidal dissipation of Mars, in learning the timescale of Phobos geology we learn about the interior structure of Mars”

And all of this information is likely to come in handy when it comes time for NASA to mount crewed missions to the Red Planet. One of the key steps in the proposed “Journey to Mars” is a mission to Phobos, where the crew, a Mars habitat, and the mission’s vehicles will all be deployed in advance of a mission to the Martian surface.

Learning more about the interior structure of Mars is a goal shared by many of NASA’s future missions to the planet, which includes NASA’s InSight Lander (schedules for launch in 2018). Shedding light on Mars geology is expected to go a long way towards explaining how the planet lost its magnetosphere, and hence its atmosphere and surface water, billions of years ago.

Further Reading: Nature Communications

The post On The Origin Of Phobos’ Groovy Mystery appeared first on Universe Today.

Perseid Meteor Shower Briefly Storms, Still Has Legs

Credit: Jeremy Perez

The Perseid meteor shower must have looked fantastic from 10,000 feet. That’s how high you would have had to go to get past the pervasive fog and overcast skies at my home last night. Tonight looks a little better for weather, so I’ll do what all hopeful amateurs astronomers do. Set the alarm for 2 a.m. and peek out the shade looking for those glimmers of starlight that indicate clear skies.

From observations reported as of mid-afternoon to the International Meteor Observers 2016 Perseids Quick-Look site, it appears the greatest activity or highest meteor counts happened over Europe and points east in two outbursts: a brief but intense display around 23:15 Universal Time (6:15 p.m. CDT in daylight) August 11 when some observers briefly saw up to 15 Perseids a minute (!) with many bright ones, and a second peak starting around 2:00 UT (9 p.m. CDT) and lasting till 5:00 UT (midnight CDT).

https://www.youtube.com/watch?v=qJpr787yyBg&feature=youtu.be
90+ Perseid meteors captured on video August 11-12, 2016 by Ohio amateur John Chumack

While Europeans clearly hit the jackpot — some observers calling it the best since the 2002 Leonid storm — U.S. observers varied in their meteor counts. A few thought the shower was a bust, others reported numbers more typical of an “average year” shower. It appears that Earth passed through a dense filament of comet dust while it was night in Europe but late afternoon in the Americas. C’est la vie météore!

We should be past peak by today, but experience shows that tonight should still be a very good time for Perseid watching. Indeed, the next few nights will reward skywatchers with at least a dozen an hour. I’ll be out watching and hopefully not imagining what’s happening 10,000 feet over my head. Good luck to you too!

The post Perseid Meteor Shower Briefly Storms, Still Has Legs appeared first on Universe Today.

Get Ready for the 2016 Perseids

perseid meteor

Out camping under the August sky? The coming week gives us a good reason to stay up late, as the Perseid meteor shower graces the summer sky. An ‘old faithful’ of annual meteor showers, the Perseids are always sure to produce.

The 2016 Perseids present a few challenges, though persistent observers should still see a descent show. The Perseids are typically active from July 17th to August 24th, with the peak arriving this year right around 13:00 to 15:30 Universal Time on Friday, August 12th. This will place the radiant for the Perseids high in the sky after local midnight for observers in the northern Pacific, though observers worldwide should be vigilant over the next week. Meteor showers don’t read predictions and prognostications, and an arrival of the peak just a few hours early would place North America in the cross-hairs this coming Friday. The Perseids typically produce an average Zenithal Hourly Rate of 60-200 per hour, and the International Meteor Organization predicts a ZHR of 150 for 2016.

The nemesis of the 2016 is the Moon, which reaches Full on August 18th, six days after the shower’s peak. The time to start watching this shower is now, before the waxing Moon becomes a factor. The farther north you are, the earlier the Moon sets this week:

Moonset on the evening of August 11/12th:

Latitude versus Moonset ( in local daylight saving time)

20 degrees north – 1:30 AM

30 degrees north – 1:14 AM

40 degrees north – 0:56 AM

50 degrees north – 0:30 AM

Early morning is almost always the best time to watch any meteor shower, as the Earth-bound observer faces in to the meteor stream head on. The December Geminids only recently surpassed the Perseids in annual intensity in the past few years.

The radiant of the Perseids drifts through the constellations of Cassiopeia, Perseus and Camelopardalis from late July to mid-August. The Perseids could just as easily have received the tongue-twisting moniker of the ‘Cassiopeiaids’ or the ‘August Camelopardalids.’ The source of the Perseids is comet Comet 109P/Swift-Tuttle discovered by Lewis Swift and Horace Tuttle in 1862. Comet Swift-Tuttle reached perihelion on 1992, and visits the inner solar system once again in 2126.

The Perseids are also sometimes referred as the “Tears of Saint Lawrence” who was martyred on a hot grid iron on August 10th, 258 AD.

The Perseids have been especially active in recent decades, following the perihelion passage of Comet Swift-Tuttle.  Meteor showers come and go. For example, the Andromedids were a shower of epic storm proportions until the late 19th century. We have records of the Perseids back to 36AD, but on some (hopefully) far off date, the debris path of Comet Swift-Tuttle will fail to intersect the Earth’s orbit annually, and the Perseids will become a distant memory. During previous years, the Perseids exhibited a peak of ZHR= 95 (2015), 68 (2014), 110 (2013), 121 (2012) and 58 (2011). Keep in mind, the Perseids have also sometimes displayed a twin peak during previous years, as well.

Observing the Perseids

The best instrument to observe the Perseids with is a pair of old fashioned, ‘Mk-1 eyeballs.’ Simply lay back, warm drink in hand, and watch. Remember, the quoted ZHR is an ideal rate that we all strive for, though there are strategies to maximize your chances of catching a meteor. Watching early in the morning when the radiant rides highest (around sunrise in the case of the Perseids), seeking out dark skies, and enlisting a friend to watch in an opposite direction can raise your hourly meteor count.

Keep a pair of binoculars handy to examine any persistent glowing trains and lingering smoke trails from bright fireballs. Monitoring the FM band for the pings of accompanying radio meteors can add another dimension to an observation session. The ionized trail of a meteor can very occasionally reflect the signal of a distant radio station, bringing it through clear for a few seconds before fading out.

@Astroguyz I wasn’t aiming for #Perseid images, wanted to grab Milky Way shots and it sneaked into one of the frames pic.twitter.com/BuGE8xrsVH

— irv (@irvb) August 9, 2016

Also, keep an ear out for an even stranger phenomenon, as bright meteors are sometimes accompanied by a hissing or crackling sound. Long thought to be a psychological phenomenon, a team of Japanese astronomers managed to catch recordings of this strange effect during the 1988 Perseid meteors.

Imaging meteors is also pretty straight forward. Simply tripod mount a DSLR with a wide field lens, take some test exposures of the sky to get the ISO, f-stop and exposure combination just right, and begin taking exposures 30 seconds to five minutes long. An intervalometer can automate the process, freeing you up to kick back and watch the show.

Got science? Be sure to send those meteor counts into the International Meteor Organization (IMO) and watch their live updated graph as the shower progresses.

Also, be sure to tweet those meteor sightings to #Meteorwatch.

The post Get Ready for the 2016 Perseids appeared first on Universe Today.

470 Million Year Old Meteorite Discovered In Swedish Quarry

Osterplana 65, the meteorite at the heart of a mystery. This meteorite is different than the thousands of other meteorites in collections around the world. Image: Birger Schmitz

470 million years ago, somewhere in our Solar System, there was an enormous collision between two asteroids. We know this because of the rain of meteorites that struck Earth at that time. But inside that rain of meteorites, which were all of the same type, there is a mystery: an oddball, different from the rest. And that oddball could tell us something about how rocks from space can change ecosystems, and allow species to thrive.

This oddball meteorite has a name: Osterplana 65. It’s a fossilized meteorite, and it was found in a limestone quarry in Sweden. Osterplana 65 fell to Earth some 470 mya, during the Ordovician period, and sank to the bottom of the ocean. There, it became sequestered in a bed of limestone, itself created by the sea-life of the time.

The Ordovician period is marked by a couple thing: a flourishing of life similar to the Cambrian period that preceded it, and a shower of meteors called the Ordovician meteor event. There is ample evidence of the Ordovician meteor event in the form of meteorites, and they all conform to similar chemistry and structure. So it’s long been understood that they all came from the same parent body.

The collision that caused this rain of meteorites had to have two components, two parent bodies, and Osterplana 65 is evidence that one of these parent bodies was different. In fact, Ost 65 represents a so far unknown type of meteorite.

The study that reported this finding was published in Nature on June 14 2016. As the text of the study says, “Although single random meteorites are possible, one has to consider that Öst 65 represents on the order of one per cent of the meteorites that have been found on the mid-Ordovician sea floor. “It goes on to say, “…Öst 65 may represent one of the dominant types of meteorites arriving on Earth 470 Myr ago.”

The discovery of a type of meteorite falling on Earth 470 mya, and no longer falling in our times, is important for a couple reasons. The asteroid that produced it is probably no longer around, and there is no other source for meteorites like Ost 65 today.

The fossil record of a type of meteorite no longer in existence may help us unravel the story of our Solar System. The asteroid belt itself is an ongoing evolution of collision and destruction. It seems reasonable that some types of asteroids that were present in the earlier Solar System are no longer present, and Ost 65 provides evidence that that is true, in at least one case.

Ost 65 shows us that the diversity in the population of meteorites was greater in the past than it is today. And Ost 65 only takes us back 470 mya. Was the population even more diverse even longer ago?

The Earth is largely a conglomeration of space rocks, and we know that there are no remnants of these Earthly building blocks in our collections of meteorites today. What Ost 65 helps prove is that the nature of space rock has changed over time, and the types of rock that came together to form Earth are no longer present in space.

[embed]https://www.youtube.com/watch?v=6aEdhZP8g-s[/embed]

Ost 65 was found in amongst about 100 other meteorites, which were all of the same type. It was found in the garbage dump part of the quarry. It’s presence is a blemish on the floor tiles that are cut at the quarry. Study co-author Birgen Schmitz told the BBC in an interview that “It used to be that they threw away the floor tiles that had ugly black dots in them. The very first fossil meteorite we found was in one of their dumps.”

According to Schmitz, he and his colleagues have asked the quarry to keep an eye out for these types of defects in rocks, in case more of them are fossilized meteorites.

Finding more fossilized meteorites could help answer another question that goes along with the discovery of Ost 65. Did the types and amounts of space rock falling to Earth at different times help shape the evolution of life on Earth? If Ost 65 was a dominant type of meteorite falling to Earth 470 mya, what effect did it have? There appear to be a confounding number of variables that have to be aligned in order for life to appear and flourish. A shower of minerals from space at the right time could very well be one of them.

Whether that question ever gets answered is anybody’s guess at this point. But Ost 65 does tell us one thing for certain. As the text of the study says, “Apparently there is potential to reconstruct important aspects of solar-system history by looking down in Earth’s sediments, in addition to looking up at the skies.”

The post 470 Million Year Old Meteorite Discovered In Swedish Quarry appeared first on Universe Today.