NASA’s Tracking Data Relay Satellite-M Vital for Science Relay Poised for Liftoff Aug. 18 – Watch Live

KENNEDY SPACE CENTER, FL – The last of NASA’s next generation Tracking and Data Relay Satellites (TRDS) that looks like a giant alien fish or cocooned creature but actually plays an absolutely vital role in relaying critical science measurements, research data and tracking observations gathered by the International Space Station (ISS), Hubble and a plethora of Earth science missions is poised for blastoff Friday, Aug. 18, morning from the Florida Space Coast.

The post NASA’s Tracking Data Relay Satellite-M Vital for Science Relay Poised for Liftoff Aug. 18 – Watch Live appeared first on Universe Today.

NASA Webb Telescope Resumes Rigorous Vibration Qualification Tests

Engineers have resumed a series of critical and rigorous vibration qualification tests on NASA’s mammoth James Webb Space Telescope (JWST) at NASA’s Goddard Space Flight Center, in Greenbelt, Maryland to confirm its safety, integrity and readiness for the unforgiving environment of space flight.

The post NASA Webb Telescope Resumes Rigorous Vibration Qualification Tests appeared first on Universe Today.

NASA Webb Telescope Structure is Sound After Vibration Testing Detects Anomaly

NASA GODDARD SPACE FLIGHT CENTER, MD – The James Webb Space Telescope (JWST) is now deemed “sound” and apparently unscathed, engineers have concluded, based on results from a new batch of intensive inspections of the observatory’s structure, after concerns were raised in early December when technicians initially detected “anomalous readings” during a preplanned series of vibration tests, NASA announced Dec. 23.

The post NASA Webb Telescope Structure is Sound After Vibration Testing Detects Anomaly appeared first on Universe Today.

Webb Telescope Gets its Science Instruments Installed

In this rare view, the James Webb Space Telescope team crane lifted the science instrument package for installation into the telescope structure.  Credits: NASA/Chris Gunn

The package of powerful science instruments at the heart of NASA’s mammoth James Webb Space Telescope (JWST) have been successfully installed into the telescopes structure.

A team of two dozen engineers and technicians working with “surgical precision” inside the world’s largest clean room at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, meticulously guided the instrument package known as the ISIM (Integrated Science Instrument Module) into the telescope truss structure.

The ISIM holds the observatory’s international quartet of state-of-the-art research instruments, funded, built and provided by research teams in the US, Canada and Europe.

“This is a tremendous accomplishment for our worldwide team,” said John Mather, James Webb Space Telescope Project Scientist and Nobel Laureate, in a statement.

“There are vital instruments in this package from Europe and Canada as well as the US and we are so proud that everything is working so beautifully, 20 years after we started designing our observatory.”

Just as with the mirrors installation and other assembly tasks, the technicians practiced the crucial ISIM installation procedure numerous times via test runs, computer modeling and a mock-up of the instrument package.

“Our personnel were navigating a very tight space with very valuable hardware,” said Jamie Dunn, ISIM Manager.

“We needed the room to be quiet so if someone said something we would be able to hear them. You listen not only for what other people say, but to hear if something doesn’t sound right.”

The ISIM installation continues the excellently executed final assembly phase of Webb at Goddard this year. And comes just weeks after workers finished installing the entire mirror system.

This author has witnessed and reported on the assembly progress at Goddard on numerous occasions.

ISIM is a collection of cameras and spectrographs that will record the light collected by Webb’s giant golden primary mirror.

The primary mirror is comprised of 18 hexagonal segments.

Each of the 18 hexagonal-shaped primary mirror segments measures just over 4.2 feet (1.3 meters) across and weighs approximately 88 pounds (40 kilograms). They are made of beryllium, gold coated and about the size of a coffee table.

Webb’s golden mirror structure was tilted up for a very brief period on May 4 as seen in this NASA time-lapse video:

https://youtu.be/3LdZ_NftIh8

The 18-segment primary mirror of NASA’s James Webb Space Telescope was raised into vertical alignment in the largest clean room at the agency’s Goddard Space Flight Center in Greenbelt, Maryland, on May 4, 2016. Credit: NASA

The gargantuan observatory will significantly exceed the light gathering power of NASA’s Hubble Space Telescope (HST) – currently the most powerful space telescope ever sent to space.

With the mirror structure complete, the next step was the ISIM science module installation.

To accomplish that installation, technicians carefully moved the Webb mirror structure into the clean room gantry structure.

As shown in this time-lapse video we created from Webbcam images, they tilted the structure vertically, flipped it around, lowered it back down horizontally and then transported it via an overhead crane into the work platform.

https://youtu.be/8T67ZZj9vLM

Time-lapse showing the uncovered 18-segment primary mirror of NASA’s James Webb Space Telescope being raised into vertical position, flipped and lowered upside down to horizontal position and then moved to processing gantry in the largest clean room at the agency’s Goddard Space Flight Center in Greenbelt, Maryland, on May 4/5, 2016. Images: NASA Webbcam. Time-lapse by Ken Kremer/kenkremer.com/Alex Polimeni

The telescope will launch on an Ariane V booster from the Guiana Space Center in Kourou, French Guiana in 2018.

The Webb Telescope is a joint international collaborative project between NASA, the European Space Agency (ESA) and the Canadian Space Agency (CSA).

Webb is designed to look at the first light of the Universe and will be able to peer back in time to when the first stars and first galaxies were forming. It will also study the history of our universe and the formation of our solar system as well as other solar systems and exoplanets, some of which may be capable of supporting life on planets similar to Earth.

Watch this space for my ongoing reports on JWST mirrors, science, construction and testing.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

The post Webb Telescope Gets its Science Instruments Installed appeared first on Universe Today.

Unveiled Webb Telescope Mirrors Mesmerize in ‘Golden’ Glory

All 18 gold coated primary mirrors of NASA’s James Webb Space Telescope are seen fully unveiled after removal of protective covers installed onto the backplane structure, as technicians work inside the massive clean room at NASA's Goddard Space Flight Center in Greenbelt, Maryland on May 3, 2016.  The secondary mirror mount booms are folded down into stowed for launch configuration. Credit: Ken Kremer/kenkremer.com

NASA GODDARD SPACE FLIGHT CENTER, MD – It’s Mesmerizing ! That’s the overwhelming feeling expressed among the fortunate few setting their own eyeballs on the newly exposed golden primary mirror at the heart of NASA’s mammoth James Webb Space Telescope (JWST) – a sentiment shared by the team building the one-of-its-kind observatory and myself during a visit this week by Universe Today.

“The telescope is cup up now [concave]. So you see it in all its glory!” said John Durning, Webb Telescope Deputy Project Manager, in an exclusive interview with Universe Today at NASA’s Goddard Space Flight Center on Tuesday, May 3, after the covers were carefully removed just days ago from all 18 primary mirror segments and the structure was temporarily pointed face up.

“The entire mirror system is checked out, integrated and the alignment has been checked.”

It’s a banner year for JWST at Goddard where the engineers and technicians are well into the final assembly and integration phase of the optical and science instrument portion of the colossal observatory that will revolutionize our understanding of the cosmos and our place it in. And they are moving along at a rapid pace.

JWST is the scientific successor to NASA’s 25 year old Hubble Space Telescope. It will become the biggest and most powerful space telescope ever built by humankind after it launches 30 months from now.

The flight structure for the backplane assembly truss that holds the mirrors and science instruments arrived at Goddard last August from Webb prime contractor Northrop Grumman Aerospace Systems in Redondo Beach, California.

The painstaking assembly work to piece together the 6.5 meter diameter primary mirror began just before the Thanksgiving 2015 holiday, when the first unit was successfully installed onto the central segment of the mirror holding backplane assembly.

Technicians from Goddard and J.D. Harris then methodically populated the backplane assembly one-by-one, sequentially installing the last primary mirror segment in February followed by the single secondary mirror at the top of the massive trio of mirror mount booms and the tertiary and steering mirrors inside the Aft Optics System (AOS).

Everything proceeded according to the meticulously choreographed schedule.

“The mirror installation went exceeding well,” Durning told Universe Today.

“We have maintained our schedule the entire time for installing all 18 primary mirror segments. Then the center section, which is the cone in the center, comprising the Aft Optics System (AOS). We installed that two months ago. It went exceedingly well.”

The flight structure and backplane assembly serve as the $8.6 Billion Webb telescopes backbone.

The next step is to install the observatory’s quartet of state-of-the-art research instruments, a package known as the ISIM (Integrated Science Instrument Module), in the truss structure over the next few weeks.

“The telescope is fully integrated and we are now doing the final touches to get prepared to accept the instrument pack which will start happening later this week,” Durning explained.

The integrated optical mirror system and ISIM form Webb’s optical train.

“So we are just now creating the new integration entity called OTIS – which is a combination of the OTE (Optical Telescope Assembly) and the ISIM (Integrated Science Instrument Module) together.”

“That’s essentially the entire optical train of the observatory!” Durning stated.

“It’s the critical photon path for the system. So we will have that integrated over the next few weeks.”

The combined OTIS entity of mirrors, science module and backplane truss weighs 8786 lbs (3940 kg) and measures 28’3” (8.6m) x 8”5” (2.6 m) x 7”10“ (2.4 m).

After OTIS is fully integrated, engineers and technicians will spend the rest of the year exposing it to environmental testing, adding the thermal blanketry and testing the optical train – before shipping the huge structure to NASA’s John Space Center.

“Then we will send it to NASA’s Johnson Space Center (JSC) early next year to do some cryovac testing, and the post environmental test verification of the optical system,” During elaborated.

“In the meantime Northrup Grumman is finishing the fabrication of the sunshield and finishing the integration of the spacecraft components into their pieces.”

“Then late in 2017 is when the two pieces – the OTIS configuration and the sunshield configuration – come together for the first time as a full observatory. That happens at Northrup Grumman in Redondo Beach.”

Webb’s optical train is comprised of four different mirrors. We discussed the details of the mirrors, their installation, and testing.

“There are four mirror surfaces,” Durning tell me.

“We have the large primary mirror of 18 segments, the secondary mirror sitting on the tripod above it, and the center section looking like a pyramid structure [AOS] contains the tertiary mirror and the fine steering mirror.”

“The AOS comes as a complete package. That got inserted down the middle [of the primary mirror].”

Each of the 18 hexagonal-shaped primary mirror segments measures just over 4.2 feet (1.3 meters) across and weighs approximately 88 pounds (40 kilograms). They are made of beryllium, gold coated and about the size of a coffee table.

In space, the folded mirror structure will unfold into side by side sections and work together as one large 21.3-foot (6.5-meter) mirror, unprecedented in size and light gathering capability.

The lone secondary mirror sits at the top of the tripod boom over the primary.

The tertiary mirror and fine steering mirror sit in the Aft Optics System (AOS), a cone shaped unit located at the center of the primary mirror.

“So how it works is the light from the primary mirror bounces up to the secondary, and the secondary bounces down to the tertiary,” Durning explained.

“And then the tertiary – which is within that AOS structure – bounces down to the steering mirror. And then that steering mirror steers the beams of photons to the pick off mirrors that sit below in the ISIM structure.”

“So the photons go through that AOS cone. There is a mask at the top that cuts off the path so we have a fixed shape of the beam coming through.”

“It’s the tertiary mirror that directs the photons to the fine steering mirror. The fine steering mirror then directs it [the photons] to the pick off mirrors that sit below in the ISIM structure.”

So the alignment between the AOS system and the telescopes primary and secondary mirrors is incredibly critical.

“The AOS tertiary mirror catches the light [from the secondary mirror] and directs the light to the steering mirror. The requirements for alignment were just what we needed. So that was excellent progress.”

“So the entire mirror system is checked out. The system has been integrated and the alignment has been checked.”

Webb’s golden mirror structure was tilted up for a very brief period this week on May 4 as seen in this NASA time-lapse video:

https://youtu.be/3LdZ_NftIh8

The 18-segment primary mirror of NASA’s James Webb Space Telescope was raised into vertical alignment in the largest clean room at the agency’s Goddard Space Flight Center in Greenbelt, Maryland, on May 4, 2016. Credit: NASA

The gargantuan observatory will significantly exceed the light gathering power of NASA’s Hubble Space Telescope (HST) – currently the most powerful space telescope ever sent to space.

With the mirror structure complete, the next step is ISIM science module installation.

To accomplish that, technician carefully moved the Webb mirror structure this week into the clean room gantry structure.

As shown in this time-lapse video they tilted the structure vertically, flipped it around, lowered it back down horizontally and then transported it via an overhead crane into the work platform.

https://youtu.be/8T67ZZj9vLM

Time-lapse showing the uncovered 18-segment primary mirror of NASA’s James Webb Space Telescope being raised into vertical position, flipped and lowered upside down to horizontal position and then moved to processing gantry in the largest clean room at the agency’s Goddard Space Flight Center in Greenbelt, Maryland, on May 4/5, 2016. Images: NASA Time-lapse by Ken Kremer/kenkremer.com/Alex Polimeni

More about ISIM in the next story.

Watch this space for my ongoing reports on JWST mirrors, science, construction and testing.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

The post Unveiled Webb Telescope Mirrors Mesmerize in ‘Golden’ Glory appeared first on Universe Today.

Time-lapse Video Documents Assembly of Webb Telescope Primary Mirror

This overhead shot of the James Webb Space Telescope shows part of the installation of the 18 primary flight mirrors onto the telescope structure in a clean room at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Credits: NASA’s Goddard Space Flight Center/Chris Gunn See time-lapse video below

[caption id="attachment_126323" align="aligncenter" width="4758"]This rare overhead shot of the James Webb Space Telescope shows the nine primary flight mirrors installed on the telescope structure in a clean room at NASA's Goddard Space Flight Center in Greenbelt, Maryland.  Credits: NASA's Goddard Space Flight Center/Chris Gunn This overhead shot of the James Webb Space Telescope shows part of the installation of the 18 primary flight mirrors onto the telescope structure in a clean room at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Credits: NASA’s Goddard Space Flight Center/Chris Gunn
See time-lapse video below[/caption]

NASA GODDARD SPACE FLIGHT CENTER, MD – A time-lapse video newly released by NASA documents the painstakingly complex assembly of the primary mirror at the heart of the biggest space telescope ever conceived by humankind – NASA’s James Webb Space Telescope (JWST).

Although the video, seen here, is short, it actually compresses over two and a half months of carefully choreographed and very impressive mirror installation effort into less than 90 seconds.

https://youtu.be/1d1sHLkmNQI

Video caption: This time-lapse shows the assembly of the primary mirror of NASA’s James Webb Space Telescope (JWST).

JWST is the scientific successor to NASA’s 25 year old Hubble Space Telescope and will be the most powerful space telescope ever built.

Webb is designed to look at the first light of the Universe and will be able to peer back in time to when the first stars and first galaxies were forming. It will also study the history of our universe and the formation of our solar system as well as other solar systems and exoplanets, some of which may be capable of supporting life on planets similar to Earth.

The Webb telescopes huge primary mirror is comprised of 18 hexagonal-shaped primary mirror segments measuring 21.3-foot (6.5-meter) in diameter.

They were installed onto the telescopes backbone structure by technicians assisted by a specially designed robotic arm. They worked day and night in a massive clean room at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.

The team used the claw-like robotic arm to meticulously latch onto each mirror to maneuver and attach each of the 18 primary mirrors onto the telescope structure.
Together, the 18 mirrors form a honeycomb like structure.

The intricate assembly work to piece the primary mirrors together began just before the Thanksgiving 2015 holiday, when the first unit was successfully installed onto the central segment of the mirror holding backplane assembly.

One by one the team populated the telescope structure with the primary mirrors at a pace of roughly two per week since the installations started some two and a half months ago.

The primary mirror was completely assembled on February 3, 2016.

During the installation process each of the gold coated primary mirrors was covered with a black colored cover to protect them from optical contamination.

Indeed the assembly of Webb’s primary mirror marks the culmination of a decade of work to design, develop and manufacture the telescope and counts as the start of the final assembly phase that will ultimately lead to its launch in late 2018.

Each primary mirror measures just over 4.2 feet (1.3 meters) across and weighs approximately 88 pounds (40 kilograms). They are about the size of a coffee table and made of beryllium.

In space, the folded mirror structure will unfold into side by side sections and work together as one large 21.3-foot (6.5-meter) mirror, unprecedented in size and light gathering capability.

The Webb Telescope is a joint international collaborative project between NASA, the European Space Agency (ESA) and the Canadian Space Agency (CSA).

Watch this space for my ongoing reports on JWST mirrors, construction and testing.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

The post Time-lapse Video Documents Assembly of Webb Telescope Primary Mirror appeared first on Universe Today.

All Primary Mirrors Fully Installed on NASA’s James Webb Space Telescope

All 18 primary mirrors of NASA’s James Webb Space Telescope are seen fully installed on the backplane structure by technicians using a robotic arm (center) inside the massive clean room at NASA's Goddard Space Flight Center in Greenbelt, Maryland.  Credit: Ken Kremer/kenkremer.com

NASA GODDARD SPACE FLIGHT CENTER, MD – All 18 of the primary mirrors have been fully installed onto the flight structure of what will become the biggest and most powerful space telescope ever built by humankind – NASA’s James Webb Space Telescope (JWST).

Completion of the huge and complex primary mirror marks a historic milestone and a banner start to 2016 for JWST, commencing the final assembly phase of the colossal observatory that will revolutionize our understanding of the cosmos and our place it in.

After JWST launches in slightly less than three years time, the gargantuan observatory will significantly exceed the light gathering power of the currently most powerful space telescope ever sent to space – NASA’s Hubble!

Indeed JWST is the scientific successor to NASA’s 25 year old Hubble Space Telescope.

Technicians working inside the massive clean room at the agency’s Goddard Space Flight Center in Greenbelt, Maryland, have been toiling around the clock 24/7 to fully install all 18 primary mirror segments onto the mirror holding backplane structure. This author witnessed ongoing work in progress during installation of the last of the primary mirrors.

The engineers and scientists kept up the pace of their assembly work over the Christmas holidays and also during January’s record breaking monster Snowzilla storm, that dumped two feet or more of snow across the Eastern US from Washington DC to New York City and temporarily shut down virtually all travel.

The team used a specialized robotic arm functioning like a claw to meticulously latch on to, maneuver and attach each of the 18 primary mirrors onto the telescope structure.

Each of the 18 hexagonal-shaped primary mirror segments measures just over 4.2 feet (1.3 meters) across and weighs approximately 88 pounds (40 kilograms). They are about the size of a coffee table.

In space, the folded mirror structure will unfold into side by side sections and work together as one large 21.3-foot (6.5-meter) mirror, unprecedented in size and light gathering capability.

The telescopes mirror assembly is comprised of three segments – the main central segment holding 12 mirrors and a pair of foldable outer wing-like segments that hold three mirrors each.

The painstaking assembly work to piece the primary mirrors together began just before the Thanksgiving 2015 holiday, when the first unit was successfully installed onto the central segment of the mirror holding backplane assembly.

One by one the team populated the telescope structure with the primary mirrors at a pace of roughly two per week since the installations started some two and a half months ago.

During the installation process each of the gold colored primary mirrors was covered with a black colored cover to protect them from optical contamination.

The mirror covers will be removed over the summer for testing purposes, said Lee Feinberg, optical telescope element manager at Goddard, told Universe Today.

The two wings were unfolded from their stowed-for-launch configuration to the “deployed” configuration to carry out the mirror installation. They will be folded back over into launch configuration for eventual placement inside the payload fairing of the Ariane V ECA booster rocket that will launch JWST three years from now.

“Scientists and engineers have been working tirelessly to install these incredible, nearly perfect mirrors that will focus light from previously hidden realms of planetary atmospheres, star forming regions and the very beginnings of the Universe,” said John Grunsfeld, associate administrator for NASA’s Science Mission Directorate in Washington, in a statement.

“With the mirrors finally complete, we are one step closer to the audacious observations that will unravel the mysteries of the Universe.”

The mirrors were built by Ball Aerospace & Technologies Corp., in Boulder, Colorado. Ball is the principal subcontractor to Northrop Grumman for the optical technology and lightweight mirror system. The installation of the mirrors onto the telescope structure is performed by Harris Corporation of Rochester, New York. Harris Corporation leads integration and testing for the telescope, according to NASA.

Among the next construction steps are installation of the aft optics assembly and the secondary mirror.

After that the team will install what’s known as the ‘heart of the telescope’ – the Integrated Science Instrument Module ISIM). Then comes acoustic and vibration tests throughout this year. Eventually the finished assembly will be shipped to Johnson Space Center in Houston “for an intensive cryogenic optical test to ensure everything is working properly,” say officials.

The flight structure and backplane assembly serve as the $8.6 Billion Webb telescopes backbone.

The telescope will launch on an Ariane V booster from the Guiana Space Center in Kourou, French Guiana in 2018.

The Webb Telescope is a joint international collaborative project between NASA, the European Space Agency (ESA) and the Canadian Space Agency (CSA).

Webb is designed to look at the first light of the Universe and will be able to peer back in time to when the first stars and first galaxies were forming. It will also study the history of our universe and the formation of our solar system as well as other solar systems and exoplanets, some of which may be capable of supporting life on planets similar to Earth.

“JWST has the capability to look back towards the very first objects that formed after the Big Bang,” said Dr. John Mather, NASA’s Nobel Prize Winning scientist, in a recent exclusive interview with Universe Today at NASA Goddard.

Watch this space for my ongoing reports on JWST mirrors, construction and testing.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

The post All Primary Mirrors Fully Installed on NASA’s James Webb Space Telescope appeared first on Universe Today.

James Webb Space Telescope Mirror Installation Reaches Halfway Point

This rare overhead shot of the James Webb Space Telescope shows the nine primary flight mirrors installed on the telescope structure in a clean room at NASA's Goddard Space Flight Center in Greenbelt, Maryland.  Credits: NASA's Goddard Space Flight Center/Chris Gunn

As history closes in on 2015, assembly of NASA’s James Webb Space Telescope (JWST) reached a historic milestone as the installation of the primary mirrors onto the telescope structure reached the halfway point to completion and marks the final assembly phase of the colossal observatory.

Technicians have just installed the ninth of 18 primary flight mirrors onto the mirror holding backplane structure at the agency’s Goddard Space Flight Center in Greenbelt, Maryland.

The team is using a robotic arm to carefully but diligently attach each mirror to the structure of the colossal observatory that will eventually become the most powerful telescope ever sent to space.

“This fall we start installing every mirror,” said Sandra Irish, JWST lead structural engineer during a recent interview with Universe Today at the NASA Goddard clean room facility.

The painstaking assembly work to piece the mirrors together began when the first unit was successfully installed onto the central segment just before the Thanksgiving 2015 holiday.

Working inside the massive clean room at NASA Goddard dedicated to the task, the engineering team manipulates the huge robotic arm to precisely lift and lower each gold coated mirror into place onto the observatory’s critical mirror holding backplane assembly.

“We are in good shape with the James Webb Space Telescope,” said Dr. John Mather, NASA’s Nobel Prize Winning scientist, in a recent exclusive interview with Universe Today at NASA Goddard.

The actual flight mirror backplane is comprised of three segments – the main central segment and a pair of outer wing-like segments holding three mirrors each.

One by one the team has first been populating the 12 unit central segment of the telescope structure with the primary mirrors at a pace of roughly two per week since the installations started some five weeks ago.

The pair of foldable side mounted wings at both sides, each holding a trio of mirrors, remain empty as of now.

The wings have been unfolded from the stowed-for-launch configuration to the “deployed” configuration to carry out the mirror installation. They will be folded back over into launch configuration for eventual placement inside the payload fairing of the Ariane V ECA booster rocket that will launch JWST.

Each of the 18 hexagonal-shaped primary mirror segments measures just over 4.2 feet (1.3 meters) across and weighs approximately 88 pounds (40 kilograms).

In space, the individual mirrors will unfold into several sections and work together as one large 21.3-foot (6.5-meter) mirror, unprecedented in size and light gathering capability.

To complete the entire mirror installation process onto the backplane assembly will take several months and continue into early 2016, Irish told Universe Today.

The flight structure and backplane assembly serve as the $8.6 Billion Webb telescopes backbone.

The telescope will launch from the Guiana Space Center in Kourou, French Guiana in 2018.

The telescopes primary and secondary flight mirrors had previously arrived at Goddard and the teams had practiced the installation using flight spares and engineering units.

“The years of planning and practicing is really paying dividends and the progress is really rewarding for everyone to see,” said NASA’s Optical Telescope Element Manager Lee Feinberg, in a statement.

“This starts the final assembly phase of the telescope.”

The mirrors were built by Ball Aerospace & Technologies Corp., in Boulder, Colorado. Ball is the principal subcontractor to Northrop Grumman for the optical technology and lightweight mirror system. The installation of the mirrors onto the telescope structure is performed by Harris Corporation of Rochester, New York. Harris Corporation leads integration and testing for the telescope, according to NASA.

“Then next April 2016 we will install the ISIM science module inside the backplane structure,” Irish elaborated.

The Webb Telescope is a joint international collaborative project between NASA, the European Space Agency (ESA) and the Canadian Space Agency (CSA).

JWST is the successor to NASA’s 25 year old Hubble Space Telescope.

Webb is designed to look at the first light of the Universe and will be able to peer back in time to when the first stars and first galaxies were forming.

“JWST has the capability to look back towards the very first objects that formed after the Big Bang,” Mather told Universe Today.

NASA has overall responsibility and Northrop Grumman is the prime contractor for JWST.
Watch for more on JWST construction and mirror installation.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

The post James Webb Space Telescope Mirror Installation Reaches Halfway Point appeared first on Universe Today.

James Webb Space Telescope Mirror Installation Reaches Halfway Point

This rare overhead shot of the James Webb Space Telescope shows the nine primary flight mirrors installed on the telescope structure in a clean room at NASA's Goddard Space Flight Center in Greenbelt, Maryland.  Credits: NASA's Goddard Space Flight Center/Chris Gunn

As history closes in on 2015, assembly of NASA’s James Webb Space Telescope (JWST) reached a historic milestone as the installation of the primary mirrors onto the telescope structure reached the halfway point to completion and marks the final assembly phase of the colossal observatory.

Technicians have just installed the ninth of 18 primary flight mirrors onto the mirror holding backplane structure at the agency’s Goddard Space Flight Center in Greenbelt, Maryland.

The team is using a robotic arm to carefully but diligently attach each mirror to the structure of the colossal observatory that will eventually become the most powerful telescope ever sent to space.

“This fall we start installing every mirror,” said Sandra Irish, JWST lead structural engineer during a recent interview with Universe Today at the NASA Goddard clean room facility.

The painstaking assembly work to piece the mirrors together began when the first unit was successfully installed onto the central segment just before the Thanksgiving 2015 holiday.

Working inside the massive clean room at NASA Goddard dedicated to the task, the engineering team manipulates the huge robotic arm to precisely lift and lower each gold coated mirror into place onto the observatory’s critical mirror holding backplane assembly.

“We are in good shape with the James Webb Space Telescope,” said Dr. John Mather, NASA’s Nobel Prize Winning scientist, in a recent exclusive interview with Universe Today at NASA Goddard.

The actual flight mirror backplane is comprised of three segments – the main central segment and a pair of outer wing-like segments holding three mirrors each.

One by one the team has first been populating the 12 unit central segment of the telescope structure with the primary mirrors at a pace of roughly two per week since the installations started some five weeks ago.

The pair of foldable side mounted wings at both sides, each holding a trio of mirrors, remain empty as of now.

The wings have been unfolded from the stowed-for-launch configuration to the “deployed” configuration to carry out the mirror installation. They will be folded back over into launch configuration for eventual placement inside the payload fairing of the Ariane V ECA booster rocket that will launch JWST.

Each of the 18 hexagonal-shaped primary mirror segments measures just over 4.2 feet (1.3 meters) across and weighs approximately 88 pounds (40 kilograms).

In space, the individual mirrors will unfold into several sections and work together as one large 21.3-foot (6.5-meter) mirror, unprecedented in size and light gathering capability.

To complete the entire mirror installation process onto the backplane assembly will take several months and continue into early 2016, Irish told Universe Today.

The flight structure and backplane assembly serve as the $8.6 Billion Webb telescopes backbone.

The telescope will launch from the Guiana Space Center in Kourou, French Guiana in 2018.

The telescopes primary and secondary flight mirrors had previously arrived at Goddard and the teams had practiced the installation using flight spares and engineering units.

“The years of planning and practicing is really paying dividends and the progress is really rewarding for everyone to see,” said NASA’s Optical Telescope Element Manager Lee Feinberg, in a statement.

“This starts the final assembly phase of the telescope.”

The mirrors were built by Ball Aerospace & Technologies Corp., in Boulder, Colorado. Ball is the principal subcontractor to Northrop Grumman for the optical technology and lightweight mirror system. The installation of the mirrors onto the telescope structure is performed by Harris Corporation of Rochester, New York. Harris Corporation leads integration and testing for the telescope, according to NASA.

“Then next April 2016 we will install the ISIM science module inside the backplane structure,” Irish elaborated.

The Webb Telescope is a joint international collaborative project between NASA, the European Space Agency (ESA) and the Canadian Space Agency (CSA).

JWST is the successor to NASA’s 25 year old Hubble Space Telescope.

Webb is designed to look at the first light of the Universe and will be able to peer back in time to when the first stars and first galaxies were forming.

“JWST has the capability to look back towards the very first objects that formed after the Big Bang,” Mather told Universe Today.

NASA has overall responsibility and Northrop Grumman is the prime contractor for JWST.
Watch for more on JWST construction and mirror installation.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

The post James Webb Space Telescope Mirror Installation Reaches Halfway Point appeared first on Universe Today.

James Webb Space Telescope Mirror Installation Reaches Halfway Point

This rare overhead shot of the James Webb Space Telescope shows the nine primary flight mirrors installed on the telescope structure in a clean room at NASA's Goddard Space Flight Center in Greenbelt, Maryland.  Credits: NASA's Goddard Space Flight Center/Chris Gunn

As history closes in on 2015, assembly of NASA’s James Webb Space Telescope (JWST) reached a historic milestone as the installation of the primary mirrors onto the telescope structure reached the halfway point to completion and marks the final assembly phase of the colossal observatory.

Technicians have just installed the ninth of 18 primary flight mirrors onto the mirror holding backplane structure at the agency’s Goddard Space Flight Center in Greenbelt, Maryland.

The team is using a robotic arm to carefully but diligently attach each mirror to the structure of the colossal observatory that will eventually become the most powerful telescope ever sent to space.

“This fall we start installing every mirror,” said Sandra Irish, JWST lead structural engineer during a recent interview with Universe Today at the NASA Goddard clean room facility.

The painstaking assembly work to piece the mirrors together began when the first unit was successfully installed onto the central segment just before the Thanksgiving 2015 holiday.

Working inside the massive clean room at NASA Goddard dedicated to the task, the engineering team manipulates the huge robotic arm to precisely lift and lower each gold coated mirror into place onto the observatory’s critical mirror holding backplane assembly.

“We are in good shape with the James Webb Space Telescope,” said Dr. John Mather, NASA’s Nobel Prize Winning scientist, in a recent exclusive interview with Universe Today at NASA Goddard.

The actual flight mirror backplane is comprised of three segments – the main central segment and a pair of outer wing-like segments holding three mirrors each.

One by one the team has first been populating the 12 unit central segment of the telescope structure with the primary mirrors at a pace of roughly two per week since the installations started some five weeks ago.

The pair of foldable side mounted wings at both sides, each holding a trio of mirrors, remain empty as of now.

The wings have been unfolded from the stowed-for-launch configuration to the “deployed” configuration to carry out the mirror installation. They will be folded back over into launch configuration for eventual placement inside the payload fairing of the Ariane V ECA booster rocket that will launch JWST.

Each of the 18 hexagonal-shaped primary mirror segments measures just over 4.2 feet (1.3 meters) across and weighs approximately 88 pounds (40 kilograms).

In space, the individual mirrors will unfold into several sections and work together as one large 21.3-foot (6.5-meter) mirror, unprecedented in size and light gathering capability.

To complete the entire mirror installation process onto the backplane assembly will take several months and continue into early 2016, Irish told Universe Today.

The flight structure and backplane assembly serve as the $8.6 Billion Webb telescopes backbone.

The telescope will launch from the Guiana Space Center in Kourou, French Guiana in 2018.

The telescopes primary and secondary flight mirrors had previously arrived at Goddard and the teams had practiced the installation using flight spares and engineering units.

“The years of planning and practicing is really paying dividends and the progress is really rewarding for everyone to see,” said NASA’s Optical Telescope Element Manager Lee Feinberg, in a statement.

“This starts the final assembly phase of the telescope.”

The mirrors were built by Ball Aerospace & Technologies Corp., in Boulder, Colorado. Ball is the principal subcontractor to Northrop Grumman for the optical technology and lightweight mirror system. The installation of the mirrors onto the telescope structure is performed by Harris Corporation of Rochester, New York. Harris Corporation leads integration and testing for the telescope, according to NASA.

“Then next April 2016 we will install the ISIM science module inside the backplane structure,” Irish elaborated.

The Webb Telescope is a joint international collaborative project between NASA, the European Space Agency (ESA) and the Canadian Space Agency (CSA).

JWST is the successor to NASA’s 25 year old Hubble Space Telescope.

Webb is designed to look at the first light of the Universe and will be able to peer back in time to when the first stars and first galaxies were forming.

“JWST has the capability to look back towards the very first objects that formed after the Big Bang,” Mather told Universe Today.

NASA has overall responsibility and Northrop Grumman is the prime contractor for JWST.
Watch for more on JWST construction and mirror installation.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

The post James Webb Space Telescope Mirror Installation Reaches Halfway Point appeared first on Universe Today.