VP Pence Vows Return to the Moon, Boots on Mars during KSC Visit

KENNEDY SPACE CENTER, FL – Vice President Mike Pence, during a whirlwind visit to NASA’s Kennedy Space Center in Florida, vowed that America would fortify our leadership in space under the Trump Administration with impressive goals by forcefully stating that “our nation will return to the moon, and we will put American boots on the face of Mars.”

The post VP Pence Vows Return to the Moon, Boots on Mars during KSC Visit appeared first on Universe Today.

KSC Director/Shuttle Commander Robert Cabana Talks NASA 2018 Budget- ‘Stay on the path’ with SLS, Orion, Commercial Crew: One-on-One Interview

KENNEDY SPACE CENTER VISITOR COMPLEX, FL – Following up last week’s announcement of NASA’s proposed Fiscal Year 2018 top line budget of $19.1 Billion by the Trump Administration, Universe Today spoke to NASA’ s Kennedy Space Center (KSC) Director Robert Cabana to get his perspective on the new budget and what it means for NASA and KSC; “Stay on the path!” – with SLS, Orion and Commercial Crew was his message in a nutshell.

The post KSC Director/Shuttle Commander Robert Cabana Talks NASA 2018 Budget- ‘Stay on the path’ with SLS, Orion, Commercial Crew: One-on-One Interview appeared first on Universe Today.

Trump Proposes $19.1 Billion 2018 NASA Budget, Cuts Earth Science and Education

The Trump Administration has proposed a $19.1 Billion NASA budget request for Fiscal Year 2018, which amounts to a $0.5 Billion reduction compared to the recently enacted FY 2017 NASA Budget. Although it maintains many programs, the budget also specifies significant cuts and terminations to NASA’s Earth Science and manned Asteroid redirect mission as well as the complete elimination of the Education Office.

The post Trump Proposes $19.1 Billion 2018 NASA Budget, Cuts Earth Science and Education appeared first on Universe Today.

NASA Nixes Proposal Adding Crew to First SLS/Orion Deep Space Flight

KENNEDY SPACE CENTER, FL – After conducting a thorough review examining the feasibility of adding a two person crew to the first integrated launch of America’s new Space Launch System (SLS) megarocket and Orion capsule on a mission that would propel two astronauts to the Moon and back by late 2019, NASA nixed the proposal […]

The post NASA Nixes Proposal Adding Crew to First SLS/Orion Deep Space Flight appeared first on Universe Today.

1st SLS 2nd Stage Arrives at Cape for NASA’s Orion Megarocket Moon Launch in 2018

PORT CANAVERAL – Bit by bit, piece by piece, the first of NASA’s SLS megarockets designed to propel American astronauts on deep space missions back to the Moon and beyond to Mars is at last coming together on the Florida Space Coast. And the first big integrated piece of actual flight hardware – the powerful second stage named the Interim Cryogenic Propulsion Stage (ICPS) – has just arrived by way of barge today (Mar. 7) at Port Canaveral, Fl.

The post 1st SLS 2nd Stage Arrives at Cape for NASA’s Orion Megarocket Moon Launch in 2018 appeared first on Universe Today.

NASA Studies Whether to Add Crew to 1st SLS Megarocket Moon Launch in 2019

KENNEDY SPACE CENTER, FL – At the request of the new Trump Administration, NASA has initiated a month long study to determine the feasibility of converting the first integrated unmanned launch of the agency’s new Space Launch System (SLS) megarocket and Orion capsule into a crewed mission that would propel two astronauts to the Moon and back by 2019 – 50 years after the first human lunar landing.

The post NASA Studies Whether to Add Crew to 1st SLS Megarocket Moon Launch in 2019 appeared first on Universe Today.

NASA To Study Launching Astronauts on 1st SLS/Orion Flight

KENNEDY SPACE CENTER, FL – In a potentially major change in direction for NASA’s human spaceflight architecture, the agency is officially studying the possibility of adding a crew of astronauts to the first flight of Orion deep space crew capsule and the heavy lift Space Launch System (SLS) rocket currently in development, announced Acting NASA Administrator Robert Lightfoot.

The post NASA To Study Launching Astronauts on 1st SLS/Orion Flight appeared first on Universe Today.

NASA’s First SLS Mars Rocket Fuel Tank Completes Welding

Welding is complete on the largest piece of the core stage that will provide the fuel for the first flight of NASA's new rocket, the Space Launch System, with the Orion spacecraft in 2018. The core stage liquid hydrogen tank has completed welding on the Vertical Assembly Center at NASA's Michoud Assembly Facility in New Orleans.  Credit: NASA/MAF/Steven Seipel

The first of the massive fuel tanks that will fly on the maiden launch of NASA’s SLS mega rocket in late 2018 has completed welding at the agency’s rocket manufacturing facility in New Orleans – marking a giant step forward for NASA’s goal of sending astronauts on a ‘Journey to Mars’ in the 2030s.

Technicians have just finished welding together the liquid hydrogen (LH2) fuel tank in the Vertical Assembly Center (VAC) welder at NASA’s Michoud Assembly Facility (MAF) in New Orleans. The VAC is the world’s largest welder.

This flight version of the hydrogen tank is the largest of the two fuel tanks making up the SLS core stage – the other being the liquid oxygen tank (LOX).

In fact the 130 foot tall hydrogen tank is the biggest cryogenic tank ever built for flight.

“Standing more than 130 feet tall, the liquid hydrogen tank is the largest cryogenic fuel tank for a rocket in the world,” according to NASA.

And it is truly huge – measuring also 27.6 feet (8.4 m) in diameter.

I recently visited MAF to see this giant tank when it was nearly finished welding in the VAC. I also saw the very first completed test tank version of the hydrogen tank, called the qualification tank which is virtually identical.

The precursor qualification tank was constructed to prove out all the manufacturing techniques and welding tools being utilized at Michoud.

SLS is the most powerful booster the world has even seen and one day soon will propel NASA astronauts in the agency’s Orion crew capsule on exciting missions of exploration to deep space destinations including the Moon, Asteroids and Mars – venturing further out than humans ever have before!

NASA’s agency wide goal is to send humans to Mars by the 2030s with SLS and Orion.

The LH2 and LOX tanks sit on top of one another inside the SLS outer skin. Together the hold over 733,000 gallons of propellant.

The SLS core stage – or first stage – is mostly comprised of the liquid hydrogen and liquid oxygen cryogenic fuel storage tanks which store the rocket propellants at super chilled temperatures. Boeing is the prime contractor for the SLS core stage.

The SLS core stage stands more than 200 feet tall.

The SLS core stage is comprised of five major structures: the forward skirt, the liquid oxygen tank (LOX), the intertank, the liquid hydrogen tank (LH2) and the engine section.

The LH2 and LOX tanks feed the cryogenic propellants into the first stage engine propulsion section which is powered by a quartet of RS-25 engines – modified space shuttle main engines (SSMEs) – and a pair of enhanced five segment solid rocket boosters (SRBs) also derived from the shuttles four segment boosters.

The vehicle’s four RS-25 engines will produce a total of 2 million pounds of thrust.

The tanks are assembled by joining previously manufactured dome, ring and barrel components together in the Vertical Assembly Center by a process known as friction stir welding. The rings connect and provide stiffness between the domes and barrels.

The LH2 tank is the largest major part of the SLS core stage. It holds 537,000 gallons of super chilled liquid hydrogen. It is comprised of 5 barrels, 2 domes, and 2 rings.

The LOX tank holds 196,000 pounds of liquid oxygen. It is assembled from 2 barrels, 2 domes, and 2 rings and measures over 50 feet long.

The maiden test flight of the SLS/Orion is targeted for no later than November 2018 and will be configured in its initial 70-metric-ton (77-ton) Block 1 configuration with a liftoff thrust of 8.4 million pounds – more powerful than NASA’s Saturn V moon landing rocket.

Although the SLS-1 flight in 2018 will be uncrewed, NASA plans to launch astronauts on the SLS-2/EM-2 mission slated for the 2021 to 2023 timeframe.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

The post NASA’s First SLS Mars Rocket Fuel Tank Completes Welding appeared first on Universe Today.

Major Overhaul of VAB for NASA’s SLS Mars Rocket Reaches Halfway Point With Platform Installation

Looking up to the 5 pairs of newly installed massive work platforms inside High Bay 3 of the Vehicle Assembly Building on July 28, 2016 during exclusive facility visit by Universe Today.  The new platforms are required to give technicians access to assemble NASA’s Space Launch System rocket at the Kennedy Space Center in Florida.  Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER, FL – A major overhaul of the iconic Vehicle Assembly Building (VAB) readying it for launches of NASA’s SLS Mars rocket by 2018 has reached the halfway point with installation of massive new access platforms required to enable assembly of the mammoth booster at the Kennedy Space Center (KSC) – as seen firsthand during an exclusive up close facility tour by Universe Today.

“We are in the full development stage right now and roughly 50% complete with the platforms on this job,” David Sumner, GSDO Deputy Sr. project manager for VAB development work at KSC, told Universe Today in an exclusive interview inside the VAB’s High Bay 3 on July 28, amidst workers actively turning NASA’s deep space dreams into full blown reality.

Upgrading and renovating the VAB is specifically the responsibility of NASA’s Ground Systems Development and Operations Program (GSDO) at Kennedy.

Inside VAB High Bay 3 – where previous generations of space workers proudly assembled NASA’s Saturn V Moon rocket and the Space Shuttle Orbiter launch stacks – today’s crews of workers were actively installing the newly manufactured work platforms needed to process and build the agency’s Space Launch System (SLS) rocket that will soon propel our astronauts back to exciting deep space destinations.

“We are very excited. We are at the beginning of a new program!” Sumner told me. “We have the infrastructure and are getting into operations soon.”

It’s certainly an exciting time as NASA pushes forward on all fronts in a coordinated nationwide effort to get the SLS rocket with the Orion EM-1 crew vehicle bolted on top ready and rolled out to Kennedy’s pad 39B for their planned maiden integrated blastoff by Fall 2018.

SLS and Orion are at the heart of NASA’s agency wide strategy to send astronauts on a ‘Journey to Mars’ by the 2030s.

SLS is the most powerful booster the world has even seen and is designed to boost NASA astronauts in the agency’s Orion crew capsule on exciting missions of exploration to deep space destinations including the Moon, Asteroids and Mars – venturing further out than humans ever have before!

I walked into High Bay 3, scanned all around and up to the ceiling some 525 feet away and was thrilled to see a bustling construction site – the future of humans voyages in deep space unfolding before my eyes. As I looked up to see the newly installed work platforms, I was surrounded by the constant hum of plenty of hammering, cutting, welding, banging and clanging and workers moving equipment and gear around.

Altogether a total of 10 levels of work platform levels will be installed in High Bay 3 – labeled K to A, from bottom to top. Each level consists of two platforms, denoted as the North and South side platforms.

What’s the status today?

“We are looking up at 5 of 10 platform levels with 10 of 20 platforms halves installed here. A total of ten levels are being installed,” Sumner explained.

“We are installing them from the bottom up. The bottom five levels are installed so far.”

“We are up to about the 190 foot level right now with Platform F installation. Then we are going up to about the 325 foot level with the 10th platform [Platform A].

“So there are 10 levels for EM-1.”

So much work was visible and actively in progress I definitely got the feeling from the ground up that NASA is moving fast into a new post shuttle Era – dominated by the mammoth new SLS making its assembly debut inside these hallowed walls some 18 months or so from today.

“The work today is some outfitting on the platforms overhead here, as well as more work on the platform halves sitting in the transfer aisle and High Bay 4 to get them ready to lift and install into High Bay 3.”

“Overhead steel work is also ongoing here in High Bay 3 with additional steel work going vertical for reinforcement and mounting brackets for all the platforms going vertically.”

“So quite a few work locations are active with different crews and different groups.”

Two additional new platform halves are sitting and in the VAB transfer aisle and next in line for installation. With two more awaiting in VAB High Bay 4. Fabrication of additional platform halves is ongoing at KSC’s nearby Oak Hill facility.

“The rest are being fabricated in our Oak Hill facility. So we have almost everything on site so far.”

Hensel Phelps is the general contractor for the VAB transformation. Subcontractors include S&R, Steel LLC, Sauer Inc., Jacobs and Beyel Bros Crane and Rigging.

The work platforms enable access to the SLS rocket at different levels up and down the over 300 foot tall rocket topped by the Orion crew capsule. They will fit around the outer mold line of SLS – including the twin solid rocket boosters, the core stage, and upper stage – and Orion.

The SLS core stage is being manufactured at NASA’s Michoud Assembly Facility in New Orleans, where I recently inspected the first completed liquid hydrogen tank test article – as reported here. Orion EM-1 is being manufactured here at Kennedy – as I reported here.

The platforms will provide access for workers to assemble, process and test all the SLS and Orion components before rolling out to Launch Complex 39B – which is also undergoing a concurrent major renovation and overhaul.

As of today, five of the ten levels of platforms are in place.

Each of the giant platforms made of steel measures about 38 feet long and close to 62 feet wide. They weigh between 300,000 and 325,000 pounds.

The most recently installed F North and South platforms were put in place on the north and south walls of the high bay on July 15 and 19, respectively.

How are the platforms installed ?

The platforms are carefully lifted into place by workers during a process that lasts about four hours.

“The 325 and 250 ton overhead facility cranes are used to [slowly] lift and move the platform halves back and forth between the VAB transfer aisle and High Bay 4 and into the SLS High Bay 3.”

Then they are attached to rail beams on the north and south walls of the high bay.

Construction workers from Beyel Bros Crane and Rigging also use a Grove 40 ton all terrain crane. It is also outfitted with man baskets to get to the places that cannot be reached by scaffolding in High Bay 3.
Installation of the remaining five levels of platforms should be completed by mid-2017.

“The job will be done by the middle of 2017. All the construction work will be done,” Sumner explained.

“Then we will get into our verification and validations with the Mobile Launcher (ML). Then the ML will roll in here around middle to late 2017 [for checkouts and testing] and then roll out to the pad [for more testing]. After that it will roll back in here. Then we will be ready to stack the SLS starting after that!”

The platforms will be tested beginning later this year, starting with the lowest platforms at the K-level, and working all the way up to the top, the A-level.

The platforms are attached to a system of rail beams that “provide structural support and contain the drive mechanisms to retract and extend the platforms,” according to a NASA fact sheet.

“Each platform will reside on four Hillman roller systems on each side – much like a kitchen drawer slides in and out. A mechanical articulated tray also moves in and out with each platform.”

The F-level platforms are located about 192 feet above the VAB floor.

“They will provide access to the SLS core stage (CS) intertank for umbilical mate operations. The “F-1” multi-level ground support equipment access platform will be used to access the booster forward assemblies and the CS to booster forward attach points. The upper level of F-1 will be used to remove the lifting sling used to support forward assembly mate for booster stacking operations.”

“Using the five platforms that are now installed, workers will have access to all of the Space Launch System rocket’s booster field joints and forward skirts, the core stage intertank umbilical and interface plates,” says Mike Bolger, GSDO program manager at Kennedy.

‘NASA is transforming KSC into a launch complex for the 21st Century,’ as KSC Center Director and former shuttle commander Bob Cabana often explains.

So it was out with the old and in with the new to carry out that daunting task.

“We took the old shuttle platforms out, went down to the [building] structure over the past few years and are now putting up the new SLS platforms,” Sumner elaborated.

“All the demolition work was done a few years ago. So we are in the full development stage right now and roughly 50% complete with the platforms on this job.”

And after NASA launches EM-1, significantly more VAB work lies ahead to prepare for the first manned Orion launch on the EM-2 mission set for as soon as 2021 – because it will feature an upgraded and taller version of the SLS rocket – including a new upper stage.

“For EM-2, the plan right now is we will add two more levels and relocate three more. So we will do some adjustments and new installations in the upper levels for EM-2.”

“It’s been an honor to be here and work here in the VAB every day – and prepare for the next 50 years of its life.”

“We are at the beginning of a new program. We have the infrastructure and are getting into operations soon,” Sumner said. “We have hopefully got a long way to go on the future of space exploration, with many decades of exploration ahead.”

“We are on a ‘Journey to Mars’ and elsewhere. So this is the beginning of all that. It’s very exciting!”

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

The post Major Overhaul of VAB for NASA’s SLS Mars Rocket Reaches Halfway Point With Platform Installation appeared first on Universe Today.

NASA Welds Together 1st SLS Hydrogen Test Tank for America’s Moon/Mars Rocket – Flight Unit in Progress

The first liquid hydrogen tank, also called the qualification test article, for NASA's new Space Launch System (SLS) heavy lift rocket lies horizontally beside the Vertical Assembly Center robotic weld machine on July 22, 2016 after final welding was just completed at NASA’s Michoud Assembly Facility in New Orleans.  Credit: Ken Kremer/kenkremer.com

MICHOUD ASSEMBLY FACILITY, NEW ORLEANS, LA – NASA has just finished welding together the very first fuel tank for America’s humongous Space Launch System (SLS) deep space rocket currently under development – and Universe Today had an exclusive up close look at the liquid hydrogen (LH2) test tank shortly after its birth as well as the first flight tank, during a tour of NASA’s New Orleans rocket manufacturing facility on Friday, July 22, shortly after completion of the milestone assembly operation.

“We have just finished welding the first liquid hydrogen qualification tank article …. and are in the middle of production welding of the first liquid hydrogen flight hardware tank [for SLS-1] in the big Vertical Assembly Center welder!” explained Patrick Whipps, NASA SLS Stages Element Manager, in an exclusive hardware tour and interview with Universe Today on July 22, 2016 at NASA’s Michoud Assembly Facility (MAF) in New Orleans.

“We are literally putting the SLS rocket hardware together here at last. All five elements to put the SLS stages together [at Michoud].”

This first fully welded SLS liquid hydrogen tank is known as a ‘qualification test article’ and it was assembled using basically the same components and processing procedures as an actual flight tank, says Whipps.

“We just completed the liquid hydrogen qualification tank article and lifted it out of the welding machine and put it into some cradles. We will put it into a newly designed straddle carrier article next week to transport it around safely and reliably for further work.”

SLS is the most powerful booster the world has even seen and one day soon will propel NASA astronauts in the agency’s Orion crew capsule on exciting missions of exploration to deep space destinations including the Moon, Asteroids and Mars – further out than humans have ever ventured before!

The LH2 ‘qualification test article’ was welded together using the world’s largest welder – known as the Vertical Assembly Center, or VAC, at Michoud.

And it’s a giant! – measuring approximately 130-feet in length and 27.6 feet (8.4 m) in diameter.

See my exclusive up close photos herein documenting the newly completed tank as the first media to visit the first SLS tank. I saw the big tank shortly after it was carefully lifted out of the welder and placed horizontally on a storage cradle on Michoud’s factory floor.

Finishing its assembly after years of meticulous planning and hard work paves the path to enabling the maiden test launch of the SLS heavy lifter in the fall of 2018 from the Kennedy Space Center (KSC) in Florida.

The qual test article is the immediate precursor to the actual first LH2 flight tank now being welded.

‘We will finish welding the liquid hydrogen and liquid oxygen flight tanks by September,” Whipps told Universe Today.

Technicians assembled the LH2 tank by feeding the individual metallic components into NASA’s gigantic “Welding Wonder” machine – as its affectionately known – at Michoud, thus creating a rigid 13 story tall structure.

The welding work was just completed this past week on the massive silver colored structure. It was removed from the VAC welder and placed horizontally on a cradle.

I watched along as the team was also already hard at work fabricating SLS’s first liquid hydrogen flight article tank in the VAC, right beside the qualification tank resting on the floor.

Welding of the other big fuel tank, the liquid oxygen (LOX) qualification and flight article tanks will follow quickly inside the impressive ‘Welding Wonder’ machine. The LH2 and LOX tanks sit on top of one another inside the SLS outer skin.

The SLS core stage – or first stage – is mostly comprised of the liquid hydrogen and liquid oxygen cryogenic fuel storage tanks which store the rocket propellants at super chilled temperatures. Boeing is the prime contractor for the SLS core stage.

To prove that the new welding machines would work as designed, NASA opted “for a 3 stage assembly philosophy,” Whipps explained.

Engineers first “welded confidence articles for each of the tank sections” to prove out the welding techniques “and establish a learning curve for the team and test out the software and new weld tools. We learned a lot from the weld confidence articles!”

“On the heels of that followed the qualification weld articles” for tank loads testing.

“The qualification articles are as ‘flight-like’ as we can get them!

With the expectation that there are still some tweaks coming.”

“And finally that leads into our flight hardware production welding and manufacturing the actual flight unit tanks for launches.”

“All the confidence articles and the LOX qualification article are complete!”

What’s the next step for the LH2 tank?

The test article tank will be outfitted with special sensors and simulators attached to each end to record reams of important engineering data, thereby extending it to about 185 feet in length.

Thereafter it will loaded onto the Pegasus barge and shipped to NASA’s Marshall Space Flight Center in Huntsville, Alabama, for structural loads testing on one of two new test stands currently under construction for the tanks. The tests are done to prove that the tanks can withstand the extreme stresses of spaceflight and safely carry our astronauts to space.

“We are manufacturing the simulators for each of the SLS elements now for destructive tests – for shipment to Marshall. It will test all the stress modes, and finally to failure to see the process margins.”

The SLS core stage builds on heritage from NASA’s Space Shuttle Program and is based on the shuttle’s External Tank (ET). All 135 ET flight units were built at Michoud during the thirty year long shuttle program by Lockheed Martin.

“We saved billions of dollars and years of development effort vs. starting from a clean sheet of paper design, by taking aspects of the shuttle … and created an External Tank type generic structure – with the forward avionics on top and the complex engine section with 4 engines (vs. 3 for shuttle) on the bottom,” Whipps elaborated.

“This is truly an engineering marvel like the External Tank was – with its strength that it had and carrying the weight that it did. If you made our ET the equivalent of a Coke can, our thickness was about 1/5 of a coke can.”

“It’s a tremendous engineering job. But the ullage pressures in the LOX and LH2 tanks are significantly more and the systems running down the side of the SLS tank are much more sophisticated. Its all significantly more complex with the feed lines than what we did for the ET. But we brought forward the aspects and designs that let us save time and money and we knew were effective and reliable.”

The SLS core stage is comprised of five major structures: the forward skirt, the liquid oxygen tank (LOX), the intertank, the liquid hydrogen tank (LH2) and the engine section.

The LH2 and LOX tanks feed the cryogenic propellants into the first stage engine propulsion section which is powered by a quartet of RS-25 engines – modified space shuttle main engines (SSMEs) – and a pair of enhanced five segment solid rocket boosters (SRBs) also derived from the shuttles four segment boosters.

The tanks are assembled by joining previously manufactured dome, ring and barrel components together in the Vertical Assembly Center by a process known as friction stir welding. The rings connect and provide stiffness between the domes and barrels.

The LH2 tank is the largest major part of the SLS core stage. It holds 537,000 gallons of super chilled liquid hydrogen. It is comprised of 5 barrels, 2 domes, and 2 rings.

The LOX tank holds 196,000 pounds of liquid oxygen. It is assembled from 2 barrels, 2 domes, and 2 rings and measures over 50 feet long.

The material of construction of the tanks has changed compared to the ET.

“The tanks are constructed of a material called the Aluminum 2219 alloy,” said Whipps. “It’s a ubiquosly used aerospace alloy with some copper but no lithium, unlike the shuttle superlightweight ET tanks that used Aluminum 2195. The 2219 has been a success story for the welding. This alloy is heavier but does not affect our payload potential.”

“The intertanks are the only non welded structure. They are bolted together and we are manufacturing them also. It’s much heavier and thicker.”

Overall, the SLS core stage towers over 212 feet (64.6 meters) tall and sports a diameter of 27.6 feet (8.4 m).

NASA’s Vehicle Assembly Center is the world’s largest robotic weld tool. The domes and barrels are assembled from smaller panels and piece parts using other dedicated robotic welding machines at Michoud.

The total weight of the whole core stage empty is 188,000 pounds and 2.3 million pounds when fully loaded with propellant. The empty ET weighed some 55,000 pounds.

Considering that the entire Shuttle ET was 154-feet long, the 130-foot long LH2 tank alone isn’t much smaller and gives perspective on just how big it really is as the largest rocket fuel tank ever built.

“So far all the parts of the SLS rocket are coming along well.”

“The Michoud SLS workforce totals about 1000 to 1500 people between NASA and the contractors.”

Every fuel tank welded together from now on after this series of confidence and qualification LOX and LH2 tanks will be actual flight article tanks for SLS launches.

“There are no plans to weld another qualification tank after this,” Nesselroad confirmed to me.

What’s ahead for the SLS-2 core stage?

“We start building the second SLS flight tanks in October of this year – 2016!” Nesselroad stated.

The world’s largest welder was specifically designed to manufacture the core stage of the world’s most powerful rocket – NASA’s SLS. The Vertical Assembly Center welder was officially opened for business at NASA’s Michoud Assembly Facility in New Orleans on Friday, Sept. 12, 2014.

NASA Administrator Charles Bolden was personally on hand for the ribbon-cutting ceremony at the base of the huge VAC welder.

The state-of-the-art welding giant stands 170 feet tall and 78 feet wide. It complements the world-class welding toolkit being used to assemble various pieces of the SLS core stage including the domes, rings and barrels that have been previously manufactured.

The maiden test flight of the SLS/Orion is targeted for no later than November 2018 and will be configured in its initial 70-metric-ton (77-ton) version with a liftoff thrust of 8.4 million pounds.

Although the SLS-1 flight in 2018 will be uncrewed, NASA plans to launch astronauts on the SLS-2/EM-2 mission slated for the 2021 to 2023 timeframe.

The exact launch dates fully depend on the budget NASA receives from Congress and who is elected President in the November 2016 election and whether they maintain or modify NASA’s objectives.

“If we can keep our focus and keep delivering, and deliver to the schedules, the budgets and the promise of what we’ve got, I think we’ve got a very capable vision that actually moves the nation very far forward in moving human presence into space,” said William Gerstenmaier, associate administrator for the Human Exploration and Operations Mission Directorate at NASA Headquarters in Washington, during the post QM-2 SRB test media briefing in Utah last month.

“This is a very capable system. It’s not built for just one or two flights. It is actually built for multiple decades of use that will enable us to eventually allow humans to go to Mars in the 2030s.”

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

The post NASA Welds Together 1st SLS Hydrogen Test Tank for America’s Moon/Mars Rocket – Flight Unit in Progress appeared first on Universe Today.