NASA To Study Launching Astronauts on 1st SLS/Orion Flight

KENNEDY SPACE CENTER, FL – In a potentially major change in direction for NASA’s human spaceflight architecture, the agency is officially studying the possibility of adding a crew of astronauts to the first flight of Orion deep space crew capsule and the heavy lift Space Launch System (SLS) rocket currently in development, announced Acting NASA Administrator Robert Lightfoot.

The post NASA To Study Launching Astronauts on 1st SLS/Orion Flight appeared first on Universe Today.

Revolutionary NASA/NOAA GOES-R Geostationary Weather Satellite Awesome Night Launch

KENNEDY SPACE CENTER, FL – GOES-R, the first in a new series of revolutionary NASA/NOAA geostationary weather satellites blasted off on an awesome nighttime launch to orbit this evening from the Florida Space Coast. Liftoff of the highly advanced Geostationary Operational Environmental Satellite-R (GOES-R) weather observatory bolted atop a ULA Atlas V rocket came at […]

The post Revolutionary NASA/NOAA GOES-R Geostationary Weather Satellite Awesome Night Launch appeared first on Universe Today.

NASA’s First SLS Mars Rocket Fuel Tank Completes Welding

Welding is complete on the largest piece of the core stage that will provide the fuel for the first flight of NASA's new rocket, the Space Launch System, with the Orion spacecraft in 2018. The core stage liquid hydrogen tank has completed welding on the Vertical Assembly Center at NASA's Michoud Assembly Facility in New Orleans.  Credit: NASA/MAF/Steven Seipel

The first of the massive fuel tanks that will fly on the maiden launch of NASA’s SLS mega rocket in late 2018 has completed welding at the agency’s rocket manufacturing facility in New Orleans – marking a giant step forward for NASA’s goal of sending astronauts on a ‘Journey to Mars’ in the 2030s.

Technicians have just finished welding together the liquid hydrogen (LH2) fuel tank in the Vertical Assembly Center (VAC) welder at NASA’s Michoud Assembly Facility (MAF) in New Orleans. The VAC is the world’s largest welder.

This flight version of the hydrogen tank is the largest of the two fuel tanks making up the SLS core stage – the other being the liquid oxygen tank (LOX).

In fact the 130 foot tall hydrogen tank is the biggest cryogenic tank ever built for flight.

“Standing more than 130 feet tall, the liquid hydrogen tank is the largest cryogenic fuel tank for a rocket in the world,” according to NASA.

And it is truly huge – measuring also 27.6 feet (8.4 m) in diameter.

I recently visited MAF to see this giant tank when it was nearly finished welding in the VAC. I also saw the very first completed test tank version of the hydrogen tank, called the qualification tank which is virtually identical.

The precursor qualification tank was constructed to prove out all the manufacturing techniques and welding tools being utilized at Michoud.

SLS is the most powerful booster the world has even seen and one day soon will propel NASA astronauts in the agency’s Orion crew capsule on exciting missions of exploration to deep space destinations including the Moon, Asteroids and Mars – venturing further out than humans ever have before!

NASA’s agency wide goal is to send humans to Mars by the 2030s with SLS and Orion.

The LH2 and LOX tanks sit on top of one another inside the SLS outer skin. Together the hold over 733,000 gallons of propellant.

The SLS core stage – or first stage – is mostly comprised of the liquid hydrogen and liquid oxygen cryogenic fuel storage tanks which store the rocket propellants at super chilled temperatures. Boeing is the prime contractor for the SLS core stage.

The SLS core stage stands more than 200 feet tall.

The SLS core stage is comprised of five major structures: the forward skirt, the liquid oxygen tank (LOX), the intertank, the liquid hydrogen tank (LH2) and the engine section.

The LH2 and LOX tanks feed the cryogenic propellants into the first stage engine propulsion section which is powered by a quartet of RS-25 engines – modified space shuttle main engines (SSMEs) – and a pair of enhanced five segment solid rocket boosters (SRBs) also derived from the shuttles four segment boosters.

The vehicle’s four RS-25 engines will produce a total of 2 million pounds of thrust.

The tanks are assembled by joining previously manufactured dome, ring and barrel components together in the Vertical Assembly Center by a process known as friction stir welding. The rings connect and provide stiffness between the domes and barrels.

The LH2 tank is the largest major part of the SLS core stage. It holds 537,000 gallons of super chilled liquid hydrogen. It is comprised of 5 barrels, 2 domes, and 2 rings.

The LOX tank holds 196,000 pounds of liquid oxygen. It is assembled from 2 barrels, 2 domes, and 2 rings and measures over 50 feet long.

The maiden test flight of the SLS/Orion is targeted for no later than November 2018 and will be configured in its initial 70-metric-ton (77-ton) Block 1 configuration with a liftoff thrust of 8.4 million pounds – more powerful than NASA’s Saturn V moon landing rocket.

Although the SLS-1 flight in 2018 will be uncrewed, NASA plans to launch astronauts on the SLS-2/EM-2 mission slated for the 2021 to 2023 timeframe.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

The post NASA’s First SLS Mars Rocket Fuel Tank Completes Welding appeared first on Universe Today.

Apollo 11 Moonwalker Buzz Aldrin Talks to Universe Today about ‘Destination Mars’

Apollo 11 moonwalker Buzz Aldrin discusses the human ‘Journey to Mars with Universe Today at newly opened ‘Destination Mars’ holographic experience during media preview at the Kennedy Space Center visitor complex in Florida on Sept. 18, 2016.  Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER VISITOR COMPLEX, FL – Sending humans on a ‘Journey to Mars’ and developing strategies and hardware to accomplish the daunting task of getting ‘Humans to Mars’ is NASA’s agency wide goal and the goal of many space enthusiasts – including Apollo 11 moonwalker Buzz Aldrin.

NASA is going full speed ahead developing the SLS Heavy lift rocket and Orion crew module with a maiden uncrewed launch from the Kennedy Space Center set for late 2018 to the Moon. Crewed Mars missions would follow by the 2030s.

In the marketplace of ideas, there are other competing and corollary proposals as well from government, companies and private citizens on pathways to the Red Planet. For example SpaceX CEO Elon Musk wants to establish a colony on Mars using an Interplanetary Transport System of SpaceX developed rockets and spaceships.

Last week I had the opportunity to ask Apollo 11 Moonwalker Buzz Aldrin for his thoughts about ‘Humans to Mars’ and the role of commercial space – following the Grand Opening ceremony for the new “Destination Mars’ holographic exhibit at the Kennedy Space Center visitor complex in Florida.

Moonwalker Aldrin strongly advocated for more commercial activity in space and that “exposure to microgravity” for “many commercial products” is good, he told Universe Today.

More commercial activities in space would aid space commerce and getting humans to Mars.

“We need to do that,” Aldrin told me.

Buzz Aldrin is the second man to set foot on the Moon. He stepped onto the lunar soil a few minutes after Apollo 11 Commander Neil Armstrong, on July 20, 1969 in the Sea of Tranquility.

Aldrin also strongly supports some type of American space station capability “beyond the ISS” to foster the Mars capability.

And we need to be thinking about that follow on “US capability” right now!

“I think we need to have a US capability beyond the ISS to prepare for future activities right from the beginning,” Aldrin elaborated.

Currently the ISS partnership of the US, Russia, ESA, Japan and Canada has approved extending the operations of the International Space Station (ISS) until 2024. What comes after that is truly not known.

NASA is not planning for a follow-on space station in low Earth orbit at this time. The agency seems to prefer development of a commercial space station, perhaps with core modules from Bigelow Aerospace and/or other companies.

So that commercial space station will have to be designed, developed and launched by private companies. NASA and others would then lease space for research and other commercial activities and assorted endeavors on the commercial space station.

For example, Bigelow wants to dock their privately developed B330 habitable module at the ISS by 2020, following launch on a ULA Atlas V. And then spin it off as an independent space station when the ISS program ends – see my story.

Only China has firm plans for a national space station in the 2020’s. And the Chinese government has invited other nations to submit proposals. Russia’s ever changing space exploration plans may include a space station – but that remains to be actually funded and seen.

Regarding Mars, Aldrin has lectured widely and written books about his concept for “cycling pathways to occupy Mars,” he explained.

Watch this video of Apollo 11 moonwalker Buzz Aldrin speaking to Universe Today:

https://youtu.be/b-uczjRC-zs

Video Caption: Buzz Aldrin at ‘Destination Mars’ Grand Opening at KSCVC. Apollo 11 moonwalker Buzz Aldrin talks to Universe Today/Ken Kremer during Q&A at ‘Destination Mars’ Holographic Exhibit Grand Opening ceremony at Kennedy Space Center Visitor Complex (KSCVC) in Florida on 9/18/16. Credit: Ken Kremer/kenkremer.com

Here is a transcript:

Universe Today/Ken Kremer: Can you talk about the role of commercial space [in getting humans to Mars]. Elon Musk wants to try and send people to Mars, maybe even before NASA. What do you think?

Buzz Aldrin: “Well, being a transportation guy in space for humans – well commercial, what that brings to mind is tourism plus space travel.

And there are many many more things commercial that are done with products that can be fine tuned by exposure to microgravity. And we need to do that.”

“I think we need to have a US capability beyond the ISS to prepare for future activities right from the beginning.”

“And that’s why what has sort of fallen into place is the name for my plan for the future – which is ‘cycling pathways to occupy Mars.’”

“A cycler in low Earth orbit, one in lunar orbit, and one to take people to Mars.”

“And they are utilized in evolutionary fashion.”

Meanwhile, be sure to visit the absolutely spectacular “Destination Mars” holographic exhibit before it closes on New Year’s Day 2017 – because it is only showing at KSCVC.

You can get more information or book a visit to Kennedy Space Center Visitor Complex, by clicking on the website link:

https://www.kennedyspacecenter.com/things-to-do/destination-mars.aspx

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

The post Apollo 11 Moonwalker Buzz Aldrin Talks to Universe Today about ‘Destination Mars’ appeared first on Universe Today.

NASA Successfully Test Fires Mars Mega Rocket Engine with Modernized ‘Brain’ Controller

NASA engineers successfully conducted a development test of the RS-25 rocket engine Thursday, Aug. 18 at NASA’s Stennis Space Center near Bay St. Louis, Miss. The RS-25 will help power the core stage of the agency’s new Space Launch System (SLS) rocket for the journey to Mars.  Credit: Ken Kremer/kenkremer.com

NASA STENNIS SPACE CENTER, MISS – NASA engineers successfully carried out a key developmental test firing of an RS-25 rocket engine along with its modernized ‘brain’ controller at the Stennis Space Center on Thursday, Aug. 18, as part of the ongoing huge development effort coordinating the agency’s SLS Mars mega rocket slated for its maiden blastoff by late 2018.

“Today’s test was very successful,” Steve Wofford, manager of the SLS Liquid Engines Office at NASA’s Marshall Space Flight Center in Huntsville, Alabama, told Universe Today at the conclusion of the exciting RS-25 engine test gushing a huge miles long plume of steam at NASA Stennis on Aug. 18 under sweltering Gulf Coast heat.

“It was absolutely great!”

Thursday’s full thrust RS-25 engine hot fire test, using engine No. 0528, ran for its planned full duration of 7.5 minutes and met a host of critical test objectives required to confirm and scope out the capabilities and operating margins of the upgraded engines ,which are recycled from the shuttle era.

“We ran a full program duration of 420 seconds . And we had no failure identifications pop up.”

“It looks like we achieved all of our data objectives,” Wofford elaborated to Universe Today, after we witnessed the test from a viewing area just a few hundred meters away, with our ears protected by ear plugs.

A cluster of four RS-25 engines will power the Space Launch System (SLS) at the base of the first stage, also known as the core stage.

SLS is the most powerful booster the world has even seen and one day soon will propel NASA astronauts in the agency’s Orion crew capsule on exciting missions of exploration to deep space destinations including the Moon, Asteroids and Mars – venturing further out than humans ever have before!

NASA’s goal is to send humans to Mars by the 2030s with SLS and Orion.

The primary goal of the development tests is to validate the capabilities of a new controller – or, “brain” – for the engine and to verify the different operating conditions needed for the SLS vehicle.

The test was part of a long continuing and new series aimed at certifying the engines for flight.

“We continue this test series in the fall. Which is a continuing part of our certification series to fly these engines on NASA’s SLS vehicle,” Wofford told me.

What was the primary objective of today’s test?

“Today’s test was mostly about wringing out the new control system. We have a new engine controller on this engine. And we have to certify that new controller for flight.”

“So to certify it we run it through its paces in ground tests. And we put it through a more stringent set of test conditions than it will ever see in flight.”

“The objectives we tested today required 420 seconds of testing to complete.”

Watch this NASA video of the full test:

https://youtu.be/bJgsdnpjyes

Video Caption: RS-25 Rocket Engine Test Firing on 18 Aug. 2016: The 7.5-minute test conducted at NASA’s Stennis Space Center is part of a series of tests designed to put the upgraded former space shuttle engines through the rigorous temperature and pressure conditions they will experience during a launch of NASA’s Space Launch System mega rocket. Credit: NASA

What are the additional objectives from today’s test?

“Well you can’t do all of your objectives in one test. So the certification series are all about technical objectives and total accumulated time. So one thing we did was we accumulated time toward the time we need to certify this control system for the SLS engine,” Wofford explained.

“The other thing we did was you pick some technical objectives you want to put the controller through its paces for. And again you can’t do all of those in one test. So you spread them over a series. And we did some of those on this test.”

Aerojet Rocketdyne is the prime contractor for the RS-25 engine work and originally built them during the shuttle era.

The remaining cache of 16 heritage RS-25 engines are being recycled from their previous use as reusable space shuttle main engines (SSMEs). They are now being refurbished, upgraded and tested by NASA and Aerojet Rocketdyne to power the core stage of the Space Launch System rocket now under full development.

During launch they will fire at 109 percent thrust level for some eight and a half minutes while generating a combined two million pounds of thrust.

The SLS core stage is augmented with a pair of five segment solid rocket boosters (SRBs) generating about 3.3 million pounds of thrust each. NASA and Orbital just completed the QM-2 SRB qualification test on June 28.

Each of the RS-25’s engines generates some 500,000 pounds of thrust. They are fueled by cryogenic liquid hydrogen (LH2) and liquid oxygen (LOX).

The first liquid hydrogen (LH2) qualification fuel tank for the core stage was just welded together at NASA’s Michoud Assembly Facility in New Orleans – as I witnessed exclusively and reported here.

The RS-25 engines measure 14 feet tall and 8 feet in diameter.

For SLS they will be operating at 109% of power – a higher power level compared to a routine usage of 104.5% during the shuttle era.

They have to withstand and survive temperature extremes ranging from -423 degrees F to more than 6000 degrees F.

Why was about five seconds of Thursday’s test run at the 111% power level? Will that continue in future tests?

“We did that because we plan to fly this engine on SLS at 109% of power level. So it’s to demonstrate the feasibility of doing that. On shuttle we were certified to fly these engines at 109%,” Wofford confirmed to Universe Today.

“So to demonstrate the feasibility of doing 109% power level on SLS we ‘overtest’ . So we ran [today’s test] at 2 % above where we are going to fly in flight.”

“We will do more in the future.”

The fully assembled core stage intergrated with all 4 RS-25 flight engines will be tested at the B-2 test stand in Stennis during the first quarter of 2018 – some 6 months or more before the launch in late 2018.

How many more engines tests will be conducted prior to the core stage test?

“After today we will run 7 more tests before the core stage test and the first flight.”

“I’m thrilled. I’ve see a lot of these and it never gets old!” Wofford gushed.

The hardware for SLS and Orion is really coming together now and its becoming more and more real every day.

These are exciting times for NASA’s human deep space exploration strategy.

The maiden test flight of the SLS/Orion is targeted for no later than November 2018 and will be configured in its initial 70-metric-ton (77-ton) Block 1 configuration with a liftoff thrust of 8.4 million pounds – more powerful than NASA’s Saturn V moon landing rocket.

Although the SLS-1 flight in 2018 will be uncrewed, NASA plans to launch astronauts on the SLS-2/EM-2 mission slated for the 2021 to 2023 timeframe.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

The post NASA Successfully Test Fires Mars Mega Rocket Engine with Modernized ‘Brain’ Controller appeared first on Universe Today.

Stairway to Heaven! – Boeing Starliner Crew Access Arm’s ‘Awesome’ Launch Pad Installation

A crane lifts the Crew Access Arm and White Room for Boeing's CST-100 Starliner spacecraft for mating to the Crew Access Tower at Cape Canaveral Air Force Station’s Space Launch Complex 41 on Aug. 15, 2016.  Astronauts will walk through the arm to board the Starliner spacecraft stacked atop a United Launch Alliance Atlas V rocket.  Credit: Ken Kremer/kenkremer.com

CAPE CANAVERAL AIR FORCE STATION, FL — A new ‘Stairway to Heaven’ which American astronauts will soon stride along as “the last place on Earth” departure point aboard our next generation of human spaceships, was at long last hoisted into place at the ULA Atlas rocket launch pad on Florida’s Space Coast on Monday Aug 15, at an “awesome” media event witnessed by space journalists including Universe Today.

“This is awesome,” Chris Ferguson, a former shuttle commander who is now Boeing’s deputy program manager for the company’s Commercial Crew Program told Universe Today in an exclusive interview at the launch pad – after workers finished installing the spanking new Crew Access Arm walkway for astronauts leading to the hatch of Boeing’s Starliner ‘Space Taxi.’

Starliner will ferry crews to and from the International Space Station (ISS) as soon as 2018.

“It’s great to see the arm up there,” Ferguson elaborated to Universe Today. “I know it’s probably a small part of the overall access tower. But it’s the most significant part!”

“We used to joke about the 195 foot level on the shuttle pad as being ‘the last place on Earth.”

“This will now be the new ‘last place on Earth’! So we are pretty charged up about it!” Ferguson gushed.

Under hot sunny skies portending the upcoming restoration of America’s ability to once again launch American astronauts from American soil when American rockets ignite, the newly constructed 50-foot-long, 90,000-pound ‘Crew Access Arm and White Room’ was lifted and mated to the newly built ‘Crew Access Tower’ at Space Launch Complex-41 (SLC-41) on Monday morning, Aug. 15.

“We talked about how the skyline is changing here and this is one of the more visible changes.”

The Boeing CST-100 Starliner crew capsule stacked atop the venerable United Launch Alliance (ULA) Atlas V rocket at pad 41 on Cape Canaveral Air Force Station in Florida will launch crews to the massive orbiting science outpost continuously soaring some 250 miles (400 km) above Earth.

Space workers, enthusiasts and dreamers alike have been waiting years for this momentous day to happen. And I was thrilled to observe all the action firsthand along with the people who made it happen from NASA, United Launch Alliance, Boeing, the contractors – as well as to experience it with my space media colleagues.

“All the elements that we talked about the last few years are now reality,” Ferguson told me.

Attaching the access arm is vital and visual proof that at long last America means business and that a renaissance in human spaceflight will commence in some 18 months or less when commercially built American crew capsules from Boeing and SpaceX take flight to the heavens above – and a new space era of regular, robust and lower cost space flights begins.

It took about an hour for workers to delicately hoist the gleaming grey steel and aluminum white ‘Stairway to Heaven’ by crane into place at the top of the tower – at one of the busiest launch pads in the world!

It’s about 130 feet above the pad surface since it’s located at the 13th level of the tower.

The install work began at about 7:30 a.m. EDT as we watched a work crew lower a giant grappling hook and attach cables. Then they carefully raised the arm off the launch pad surface by crane. The arm had been trucked to the launch pad on Aug. 11.

The tower itself is comprised of segmented tiers that were built in segments just south of the pad. They were stacked on the pad over the past few months – in between launches. Altogether they form a nearly 200-foot-tall steel structure.

Another crew stationed in the tower about 160 feet above ground waited as the arm was delicately craned into the designated notch. The workers then spent several more hours methodically bolting and welding the arm to the tower to finish the assembly process.

Indeed Monday’s installation of the Crew Access Arm and White Room at pad 41 basically completes the construction of the first new Crew Access Tower at Cape Canaveral Air Force Station since the Apollo moon landing era of the 1960s.

“It is the first new crew access structure at the Florida spaceport since the space shuttle’s Fixed Service Structures were put in place before Columbia’s first flight in 1981,” say NASA officials.

Overall the steel frame of the massive tower weighs over a million pounds. For perspective, destination ISS now weighs in at about a million pounds in low Earth orbit.

Construction of the tower began about 18 months ago.

“You think about when we started building this 18 months ago and now it’s one of the most visible changes to the Cape’s horizon since the 1960s,” said Ferguson at Monday’s momentous media event. “It’s a fantastic day.”

The White Room is an enclosed area at the end of the Crew Access Arm. It big enough for astronauts to make final adjustments to their suits and is spacious enough for technicians to assist the astronauts climbing aboard the spacecraft and get tucked into their seats in the final hours before liftoff.

“You have to stop and celebrate these moments in the craziness of all the things we do,” said Kathy Lueders, manager of NASA’s Commercial Crew Program, at the event. “It’s going to be so cool when our astronauts are walking out across this access arm to get on the spacecraft and go to the space station.”

The Crew Access Arm was built by Saur at NASA’s nearby off site facility at Oak Hill.

And when Starliner takes flight it will hearken back to the dawn of the Space Age.

“John Glenn was the first to fly on an Atlas, now our next leap into the future will be to have astronauts launch from here on Atlas V,” said Barb Egan, program manager for Commercial Crew for ULA.

Boeing is manufacturing Starliner in what is officially known as Boeing’s Commercial Crew and Cargo Processing Facility (C3PF) at the Kennedy Space Center in Florida under contract with NASA’s Commercial Crew Program (CCP).

The Boeing CST 100 Starliner is one of two private astronaut capsules – along with the SpaceX Crew Dragon – being developed under a CCP commercial partnership contract with NASA to end our sole reliance on Russia for crew launches back and forth to the International Space Station (ISS).

The goal of NASA’s Commercial Crew Program since its inception in 2010 is to restore America’s capability to launch American astronauts on American rockets from American soil to the ISS, as soon as possible.

Furthermore when the Boeing Starliner and SpaceX Crew Dragon become operational the permanent resident ISS crew will grow to 7 – enabling a doubling of science output aboard the science laboratory.

This significant growth in research capabilities will invaluably assist NASA in testing technologies and human endurance in its agency wide goal of sending humans on a ‘Journey to Mars’ by the 2030s with the mammoth Space Launch System (SLS) rocket and Orion deep space capsule concurrently under full scale development by the agency.

The next key SLS milestone is a trest firing of the RS-25 main engines at NASA Stennis this Thursday, Aug. 18 – watch for my onsite reports!

Boeing was awarded a $4.2 Billion contract in September 2014 by NASA Administrator Charles Bolden to complete development and manufacture of the CST-100 Starliner space taxi under the agency’s Commercial Crew Transportation Capability (CCtCap) program and NASA’s Launch America initiative.

Since the retirement of NASA’s space shuttle program in 2011, the US was been 100% dependent on the Russian Soyuz capsule for astronauts rides to the ISS at a cost exceeding $70 million per seat.

When will Ferguson actually set foot inside the walkway?

“I am hoping to get up there and walk through there in a couple of weeks or so when it’s all strapped in and done. I want to see how they are doing and walk around.”

How does the White Room fit around Starliner and keep it climate controlled?

“The end of the white room has a part that slides up and down and moves over and slides on top of the spacecraft when it’s in place.”

“There is an inflatable seal that forms the final seal to the spacecraft so that you have all the appropriate humidity control and the purge without the Florida atmosphere inside the crew module,” Ferguson replied.

Boeing and NASA are targeting Feb. 2018 for launch of the first crewed orbital test flight on the Atlas V rocket. The Atlas will be augmented with two solid rocket motors on the first stage and a dual engine Centaur upper stage.

How confident is Ferguson about meeting the 2018 launch target?

“The first crew flight is scheduled for February 2018. I am confident.” Ferguson responded.

“And we have a lot of qualification to get through between now and then. But barring any large unforeseen issues we can make it.”

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

The post Stairway to Heaven! – Boeing Starliner Crew Access Arm’s ‘Awesome’ Launch Pad Installation appeared first on Universe Today.

Major Overhaul of VAB for NASA’s SLS Mars Rocket Reaches Halfway Point With Platform Installation

Looking up to the 5 pairs of newly installed massive work platforms inside High Bay 3 of the Vehicle Assembly Building on July 28, 2016 during exclusive facility visit by Universe Today.  The new platforms are required to give technicians access to assemble NASA’s Space Launch System rocket at the Kennedy Space Center in Florida.  Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER, FL – A major overhaul of the iconic Vehicle Assembly Building (VAB) readying it for launches of NASA’s SLS Mars rocket by 2018 has reached the halfway point with installation of massive new access platforms required to enable assembly of the mammoth booster at the Kennedy Space Center (KSC) – as seen firsthand during an exclusive up close facility tour by Universe Today.

“We are in the full development stage right now and roughly 50% complete with the platforms on this job,” David Sumner, GSDO Deputy Sr. project manager for VAB development work at KSC, told Universe Today in an exclusive interview inside the VAB’s High Bay 3 on July 28, amidst workers actively turning NASA’s deep space dreams into full blown reality.

Upgrading and renovating the VAB is specifically the responsibility of NASA’s Ground Systems Development and Operations Program (GSDO) at Kennedy.

Inside VAB High Bay 3 – where previous generations of space workers proudly assembled NASA’s Saturn V Moon rocket and the Space Shuttle Orbiter launch stacks – today’s crews of workers were actively installing the newly manufactured work platforms needed to process and build the agency’s Space Launch System (SLS) rocket that will soon propel our astronauts back to exciting deep space destinations.

“We are very excited. We are at the beginning of a new program!” Sumner told me. “We have the infrastructure and are getting into operations soon.”

It’s certainly an exciting time as NASA pushes forward on all fronts in a coordinated nationwide effort to get the SLS rocket with the Orion EM-1 crew vehicle bolted on top ready and rolled out to Kennedy’s pad 39B for their planned maiden integrated blastoff by Fall 2018.

SLS and Orion are at the heart of NASA’s agency wide strategy to send astronauts on a ‘Journey to Mars’ by the 2030s.

SLS is the most powerful booster the world has even seen and is designed to boost NASA astronauts in the agency’s Orion crew capsule on exciting missions of exploration to deep space destinations including the Moon, Asteroids and Mars – venturing further out than humans ever have before!

I walked into High Bay 3, scanned all around and up to the ceiling some 525 feet away and was thrilled to see a bustling construction site – the future of humans voyages in deep space unfolding before my eyes. As I looked up to see the newly installed work platforms, I was surrounded by the constant hum of plenty of hammering, cutting, welding, banging and clanging and workers moving equipment and gear around.

Altogether a total of 10 levels of work platform levels will be installed in High Bay 3 – labeled K to A, from bottom to top. Each level consists of two platforms, denoted as the North and South side platforms.

What’s the status today?

“We are looking up at 5 of 10 platform levels with 10 of 20 platforms halves installed here. A total of ten levels are being installed,” Sumner explained.

“We are installing them from the bottom up. The bottom five levels are installed so far.”

“We are up to about the 190 foot level right now with Platform F installation. Then we are going up to about the 325 foot level with the 10th platform [Platform A].

“So there are 10 levels for EM-1.”

So much work was visible and actively in progress I definitely got the feeling from the ground up that NASA is moving fast into a new post shuttle Era – dominated by the mammoth new SLS making its assembly debut inside these hallowed walls some 18 months or so from today.

“The work today is some outfitting on the platforms overhead here, as well as more work on the platform halves sitting in the transfer aisle and High Bay 4 to get them ready to lift and install into High Bay 3.”

“Overhead steel work is also ongoing here in High Bay 3 with additional steel work going vertical for reinforcement and mounting brackets for all the platforms going vertically.”

“So quite a few work locations are active with different crews and different groups.”

Two additional new platform halves are sitting and in the VAB transfer aisle and next in line for installation. With two more awaiting in VAB High Bay 4. Fabrication of additional platform halves is ongoing at KSC’s nearby Oak Hill facility.

“The rest are being fabricated in our Oak Hill facility. So we have almost everything on site so far.”

Hensel Phelps is the general contractor for the VAB transformation. Subcontractors include S&R, Steel LLC, Sauer Inc., Jacobs and Beyel Bros Crane and Rigging.

The work platforms enable access to the SLS rocket at different levels up and down the over 300 foot tall rocket topped by the Orion crew capsule. They will fit around the outer mold line of SLS – including the twin solid rocket boosters, the core stage, and upper stage – and Orion.

The SLS core stage is being manufactured at NASA’s Michoud Assembly Facility in New Orleans, where I recently inspected the first completed liquid hydrogen tank test article – as reported here. Orion EM-1 is being manufactured here at Kennedy – as I reported here.

The platforms will provide access for workers to assemble, process and test all the SLS and Orion components before rolling out to Launch Complex 39B – which is also undergoing a concurrent major renovation and overhaul.

As of today, five of the ten levels of platforms are in place.

Each of the giant platforms made of steel measures about 38 feet long and close to 62 feet wide. They weigh between 300,000 and 325,000 pounds.

The most recently installed F North and South platforms were put in place on the north and south walls of the high bay on July 15 and 19, respectively.

How are the platforms installed ?

The platforms are carefully lifted into place by workers during a process that lasts about four hours.

“The 325 and 250 ton overhead facility cranes are used to [slowly] lift and move the platform halves back and forth between the VAB transfer aisle and High Bay 4 and into the SLS High Bay 3.”

Then they are attached to rail beams on the north and south walls of the high bay.

Construction workers from Beyel Bros Crane and Rigging also use a Grove 40 ton all terrain crane. It is also outfitted with man baskets to get to the places that cannot be reached by scaffolding in High Bay 3.
Installation of the remaining five levels of platforms should be completed by mid-2017.

“The job will be done by the middle of 2017. All the construction work will be done,” Sumner explained.

“Then we will get into our verification and validations with the Mobile Launcher (ML). Then the ML will roll in here around middle to late 2017 [for checkouts and testing] and then roll out to the pad [for more testing]. After that it will roll back in here. Then we will be ready to stack the SLS starting after that!”

The platforms will be tested beginning later this year, starting with the lowest platforms at the K-level, and working all the way up to the top, the A-level.

The platforms are attached to a system of rail beams that “provide structural support and contain the drive mechanisms to retract and extend the platforms,” according to a NASA fact sheet.

“Each platform will reside on four Hillman roller systems on each side – much like a kitchen drawer slides in and out. A mechanical articulated tray also moves in and out with each platform.”

The F-level platforms are located about 192 feet above the VAB floor.

“They will provide access to the SLS core stage (CS) intertank for umbilical mate operations. The “F-1” multi-level ground support equipment access platform will be used to access the booster forward assemblies and the CS to booster forward attach points. The upper level of F-1 will be used to remove the lifting sling used to support forward assembly mate for booster stacking operations.”

“Using the five platforms that are now installed, workers will have access to all of the Space Launch System rocket’s booster field joints and forward skirts, the core stage intertank umbilical and interface plates,” says Mike Bolger, GSDO program manager at Kennedy.

‘NASA is transforming KSC into a launch complex for the 21st Century,’ as KSC Center Director and former shuttle commander Bob Cabana often explains.

So it was out with the old and in with the new to carry out that daunting task.

“We took the old shuttle platforms out, went down to the [building] structure over the past few years and are now putting up the new SLS platforms,” Sumner elaborated.

“All the demolition work was done a few years ago. So we are in the full development stage right now and roughly 50% complete with the platforms on this job.”

And after NASA launches EM-1, significantly more VAB work lies ahead to prepare for the first manned Orion launch on the EM-2 mission set for as soon as 2021 – because it will feature an upgraded and taller version of the SLS rocket – including a new upper stage.

“For EM-2, the plan right now is we will add two more levels and relocate three more. So we will do some adjustments and new installations in the upper levels for EM-2.”

“It’s been an honor to be here and work here in the VAB every day – and prepare for the next 50 years of its life.”

“We are at the beginning of a new program. We have the infrastructure and are getting into operations soon,” Sumner said. “We have hopefully got a long way to go on the future of space exploration, with many decades of exploration ahead.”

“We are on a ‘Journey to Mars’ and elsewhere. So this is the beginning of all that. It’s very exciting!”

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

The post Major Overhaul of VAB for NASA’s SLS Mars Rocket Reaches Halfway Point With Platform Installation appeared first on Universe Today.

NASA Welds Together 1st SLS Hydrogen Test Tank for America’s Moon/Mars Rocket – Flight Unit in Progress

The first liquid hydrogen tank, also called the qualification test article, for NASA's new Space Launch System (SLS) heavy lift rocket lies horizontally beside the Vertical Assembly Center robotic weld machine on July 22, 2016 after final welding was just completed at NASA’s Michoud Assembly Facility in New Orleans.  Credit: Ken Kremer/kenkremer.com

MICHOUD ASSEMBLY FACILITY, NEW ORLEANS, LA – NASA has just finished welding together the very first fuel tank for America’s humongous Space Launch System (SLS) deep space rocket currently under development – and Universe Today had an exclusive up close look at the liquid hydrogen (LH2) test tank shortly after its birth as well as the first flight tank, during a tour of NASA’s New Orleans rocket manufacturing facility on Friday, July 22, shortly after completion of the milestone assembly operation.

“We have just finished welding the first liquid hydrogen qualification tank article …. and are in the middle of production welding of the first liquid hydrogen flight hardware tank [for SLS-1] in the big Vertical Assembly Center welder!” explained Patrick Whipps, NASA SLS Stages Element Manager, in an exclusive hardware tour and interview with Universe Today on July 22, 2016 at NASA’s Michoud Assembly Facility (MAF) in New Orleans.

“We are literally putting the SLS rocket hardware together here at last. All five elements to put the SLS stages together [at Michoud].”

This first fully welded SLS liquid hydrogen tank is known as a ‘qualification test article’ and it was assembled using basically the same components and processing procedures as an actual flight tank, says Whipps.

“We just completed the liquid hydrogen qualification tank article and lifted it out of the welding machine and put it into some cradles. We will put it into a newly designed straddle carrier article next week to transport it around safely and reliably for further work.”

SLS is the most powerful booster the world has even seen and one day soon will propel NASA astronauts in the agency’s Orion crew capsule on exciting missions of exploration to deep space destinations including the Moon, Asteroids and Mars – further out than humans have ever ventured before!

The LH2 ‘qualification test article’ was welded together using the world’s largest welder – known as the Vertical Assembly Center, or VAC, at Michoud.

And it’s a giant! – measuring approximately 130-feet in length and 27.6 feet (8.4 m) in diameter.

See my exclusive up close photos herein documenting the newly completed tank as the first media to visit the first SLS tank. I saw the big tank shortly after it was carefully lifted out of the welder and placed horizontally on a storage cradle on Michoud’s factory floor.

Finishing its assembly after years of meticulous planning and hard work paves the path to enabling the maiden test launch of the SLS heavy lifter in the fall of 2018 from the Kennedy Space Center (KSC) in Florida.

The qual test article is the immediate precursor to the actual first LH2 flight tank now being welded.

‘We will finish welding the liquid hydrogen and liquid oxygen flight tanks by September,” Whipps told Universe Today.

Technicians assembled the LH2 tank by feeding the individual metallic components into NASA’s gigantic “Welding Wonder” machine – as its affectionately known – at Michoud, thus creating a rigid 13 story tall structure.

The welding work was just completed this past week on the massive silver colored structure. It was removed from the VAC welder and placed horizontally on a cradle.

I watched along as the team was also already hard at work fabricating SLS’s first liquid hydrogen flight article tank in the VAC, right beside the qualification tank resting on the floor.

Welding of the other big fuel tank, the liquid oxygen (LOX) qualification and flight article tanks will follow quickly inside the impressive ‘Welding Wonder’ machine. The LH2 and LOX tanks sit on top of one another inside the SLS outer skin.

The SLS core stage – or first stage – is mostly comprised of the liquid hydrogen and liquid oxygen cryogenic fuel storage tanks which store the rocket propellants at super chilled temperatures. Boeing is the prime contractor for the SLS core stage.

To prove that the new welding machines would work as designed, NASA opted “for a 3 stage assembly philosophy,” Whipps explained.

Engineers first “welded confidence articles for each of the tank sections” to prove out the welding techniques “and establish a learning curve for the team and test out the software and new weld tools. We learned a lot from the weld confidence articles!”

“On the heels of that followed the qualification weld articles” for tank loads testing.

“The qualification articles are as ‘flight-like’ as we can get them!

With the expectation that there are still some tweaks coming.”

“And finally that leads into our flight hardware production welding and manufacturing the actual flight unit tanks for launches.”

“All the confidence articles and the LOX qualification article are complete!”

What’s the next step for the LH2 tank?

The test article tank will be outfitted with special sensors and simulators attached to each end to record reams of important engineering data, thereby extending it to about 185 feet in length.

Thereafter it will loaded onto the Pegasus barge and shipped to NASA’s Marshall Space Flight Center in Huntsville, Alabama, for structural loads testing on one of two new test stands currently under construction for the tanks. The tests are done to prove that the tanks can withstand the extreme stresses of spaceflight and safely carry our astronauts to space.

“We are manufacturing the simulators for each of the SLS elements now for destructive tests – for shipment to Marshall. It will test all the stress modes, and finally to failure to see the process margins.”

The SLS core stage builds on heritage from NASA’s Space Shuttle Program and is based on the shuttle’s External Tank (ET). All 135 ET flight units were built at Michoud during the thirty year long shuttle program by Lockheed Martin.

“We saved billions of dollars and years of development effort vs. starting from a clean sheet of paper design, by taking aspects of the shuttle … and created an External Tank type generic structure – with the forward avionics on top and the complex engine section with 4 engines (vs. 3 for shuttle) on the bottom,” Whipps elaborated.

“This is truly an engineering marvel like the External Tank was – with its strength that it had and carrying the weight that it did. If you made our ET the equivalent of a Coke can, our thickness was about 1/5 of a coke can.”

“It’s a tremendous engineering job. But the ullage pressures in the LOX and LH2 tanks are significantly more and the systems running down the side of the SLS tank are much more sophisticated. Its all significantly more complex with the feed lines than what we did for the ET. But we brought forward the aspects and designs that let us save time and money and we knew were effective and reliable.”

The SLS core stage is comprised of five major structures: the forward skirt, the liquid oxygen tank (LOX), the intertank, the liquid hydrogen tank (LH2) and the engine section.

The LH2 and LOX tanks feed the cryogenic propellants into the first stage engine propulsion section which is powered by a quartet of RS-25 engines – modified space shuttle main engines (SSMEs) – and a pair of enhanced five segment solid rocket boosters (SRBs) also derived from the shuttles four segment boosters.

The tanks are assembled by joining previously manufactured dome, ring and barrel components together in the Vertical Assembly Center by a process known as friction stir welding. The rings connect and provide stiffness between the domes and barrels.

The LH2 tank is the largest major part of the SLS core stage. It holds 537,000 gallons of super chilled liquid hydrogen. It is comprised of 5 barrels, 2 domes, and 2 rings.

The LOX tank holds 196,000 pounds of liquid oxygen. It is assembled from 2 barrels, 2 domes, and 2 rings and measures over 50 feet long.

The material of construction of the tanks has changed compared to the ET.

“The tanks are constructed of a material called the Aluminum 2219 alloy,” said Whipps. “It’s a ubiquosly used aerospace alloy with some copper but no lithium, unlike the shuttle superlightweight ET tanks that used Aluminum 2195. The 2219 has been a success story for the welding. This alloy is heavier but does not affect our payload potential.”

“The intertanks are the only non welded structure. They are bolted together and we are manufacturing them also. It’s much heavier and thicker.”

Overall, the SLS core stage towers over 212 feet (64.6 meters) tall and sports a diameter of 27.6 feet (8.4 m).

NASA’s Vehicle Assembly Center is the world’s largest robotic weld tool. The domes and barrels are assembled from smaller panels and piece parts using other dedicated robotic welding machines at Michoud.

The total weight of the whole core stage empty is 188,000 pounds and 2.3 million pounds when fully loaded with propellant. The empty ET weighed some 55,000 pounds.

Considering that the entire Shuttle ET was 154-feet long, the 130-foot long LH2 tank alone isn’t much smaller and gives perspective on just how big it really is as the largest rocket fuel tank ever built.

“So far all the parts of the SLS rocket are coming along well.”

“The Michoud SLS workforce totals about 1000 to 1500 people between NASA and the contractors.”

Every fuel tank welded together from now on after this series of confidence and qualification LOX and LH2 tanks will be actual flight article tanks for SLS launches.

“There are no plans to weld another qualification tank after this,” Nesselroad confirmed to me.

What’s ahead for the SLS-2 core stage?

“We start building the second SLS flight tanks in October of this year – 2016!” Nesselroad stated.

The world’s largest welder was specifically designed to manufacture the core stage of the world’s most powerful rocket – NASA’s SLS. The Vertical Assembly Center welder was officially opened for business at NASA’s Michoud Assembly Facility in New Orleans on Friday, Sept. 12, 2014.

NASA Administrator Charles Bolden was personally on hand for the ribbon-cutting ceremony at the base of the huge VAC welder.

The state-of-the-art welding giant stands 170 feet tall and 78 feet wide. It complements the world-class welding toolkit being used to assemble various pieces of the SLS core stage including the domes, rings and barrels that have been previously manufactured.

The maiden test flight of the SLS/Orion is targeted for no later than November 2018 and will be configured in its initial 70-metric-ton (77-ton) version with a liftoff thrust of 8.4 million pounds.

Although the SLS-1 flight in 2018 will be uncrewed, NASA plans to launch astronauts on the SLS-2/EM-2 mission slated for the 2021 to 2023 timeframe.

The exact launch dates fully depend on the budget NASA receives from Congress and who is elected President in the November 2016 election and whether they maintain or modify NASA’s objectives.

“If we can keep our focus and keep delivering, and deliver to the schedules, the budgets and the promise of what we’ve got, I think we’ve got a very capable vision that actually moves the nation very far forward in moving human presence into space,” said William Gerstenmaier, associate administrator for the Human Exploration and Operations Mission Directorate at NASA Headquarters in Washington, during the post QM-2 SRB test media briefing in Utah last month.

“This is a very capable system. It’s not built for just one or two flights. It is actually built for multiple decades of use that will enable us to eventually allow humans to go to Mars in the 2030s.”

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

The post NASA Welds Together 1st SLS Hydrogen Test Tank for America’s Moon/Mars Rocket – Flight Unit in Progress appeared first on Universe Today.

NASA Completes Awesome Test Firing of World’s Most Powerful Booster for Human Mission to Mars – Gallery

Ignition of the qualification motor (QM-2) booster during test firing for NASA’s Space Launch System as seen on Tuesday, June 28, 2016, at Orbital ATK Propulsion System's (SLS) test facilities in Promontory, Utah.  Credit: Julian Leek

The world’s most powerful booster that will one day propel NASA astronauts on exciting missions of exploration to deep space destinations including the Moon and Mars was successfully ignited this morning, June 28, during an awesome ground test firing on a remote mountainside in Utah, that qualifies it for an inaugural blastoff in late 2018.

The two-minute-long, full-duration static test for NASA’s mammoth Space Launch System (SLS) rocket involved firing the new five-segment solid rocket booster for its second and final qualification ground test as it sat restrained in a horizontal configuration at Orbital ATK’s test facilities at a desert site in Promontory, Utah.

The purpose was to provide NASA and prime contractor Orbital ATK with critical data on 82 qualification objectives. Engineers will use the data gathered by more than 530 instrumentation channels on the booster to certify the booster for flight.

The 154-foot-long booster was fired up on the test stand by the Orbital ATK operations team at 11:05 a.m. EDT (9:05 a.m. MT) for what is called the Qualification Motor-2 (QM-2) test.

“We have ignition of NASA’s Space Launch System motor powering us on our Journey to Mars,” said NASA commentator Kim Henry at ignition!

A gigantic plume of black smoke and intense yellow fire erupted at ignition spewing a withering cloud of ash into the Utah air and barren mountainside. It also sent out a shock wave reverberating back to excited company, NASA and media spectators witnessing the event from about a mile away as well as to another 10,000 or so space enthusiasts and members of the general public gathered to watch from about 2 miles away.

“What an absolutely amazing day today for all of us here to witness this test firing. And it’s not just a test firing. It’s really a qualification motor test firing that says this design is ready to go fly and ready to go do the mission,” said William Gerstenmaier, associate administrator for the Human Exploration and Operations Mission Directorate at NASA Headquarters in Washington, during the post QM-2 test media briefing today.

The critically important test marks a major milestone clearing the path to the first SLS launch that could happen as soon as September 2018, noted Gerstenmaier

“The team did a tremendous professional job to get all this ready for the firing. We will get over 500 channels of data on this rocket. They will pour over the data to ensure it will perform exactly the way we intended it to at these cold conditions.”

The QM-2 booster had been pre-chilled for several weeks inside a huge test storage shed to conduct this so called ‘cold motor test’ at approximately 40 degrees Fahrenheit – corresponding to the colder end of its accepted propellant temperature range.

NASA’s Space Launch System (SLS) rocket with lift off using two of the five segment solid rocket motors and four RS-25 engines to power the maiden launch of SLS and NASA’s Orion deep space manned spacecraft in late 2018.

“This final qualification test of the booster system shows real progress in the development of the Space Launch System,” said NASA associate administrator Gerstenmaier.

“Seeing this test today, and experiencing the sound and feel of approximately 3.6 million pounds of thrust, helps us appreciate the progress we’re making to advance human exploration and open new frontiers for science and technology missions in deep space.”

Despite being cooled to 40 F for the cold motor test the boosters flames are actually hot enough at some 6000 degrees Fahrenheit to boil steel.

The first ground test called QM-1 was conducted at 90 degrees Fahrenheit, at the upper end of the operating range, in March 2015 as I reported earlier here.

This second ground test firing took place about 1 hour later than originally planned due to a technical issue with the ground sequencing computer control system.

The next time one of these solid rocket boosters fire will be for the combined SLS-1/Orion EM-1 test flight in late 2018.

Each booster generates approximately 3.6 million pounds of thrust. Overall they will provide more than 75 percent of the thrust needed for the rocket and Orion spacecraft to escape Earth’s gravitational pull, says NASA.

“It was awesome to say the least,” space photographer and friend Julian Leek who witnessed the test first hand told Universe Today.

“Massive fire power released over the Utah mountains. There was about a five second delay before you could hear the sound – that really got everyone’s attention!”

“It was absolutely magnificent,” space photographer friend Dawn Taylor told me. “Can’t wait to see it at the Cape when it goes vertical.”

To date Orbital ATK has cast 3 of the 10 booster segments required for the 2018 launch, said Charlie Precourt, vice president and general manager of Orbital ATK’s Propulsion Systems Division in Promontory, Utah.

I asked Precourt about the production timing for the remaining segments.

“All of the segments will be delivered to NASA at the Kennedy Space Center (KSC) in Florida by next fall,” Precourt replied during the media briefing.

“They will be produced at a rate of roughly one a month. We also have to build the nozzles up and so forth.”

When will booster stacking begin inside the Vehicle Assembly Building (VAB) at KSC?

Booster shipments start shipping from Utah this fall. Booster stacking in the VAB starts in the spring of 2018,” Alex Priskos, manager of the NASA SLS Boosters Office at Marshall Space Flight Center in Huntsville, Alabama, told me.

Meanwhile the buildup of US flight hardware continues at NASA and contractor centers around the US, as well as the Orion service module from ESA.

The maiden test flight of the SLS/Orion is targeted for no later than November 2018 and will be configured in its initial 70-metric-ton (77-ton) version with a liftoff thrust of 8.4 million pounds.

In February 2016 the welded skeletal backbone for the Orion EM-1 mission arrived at the Kennedy Space Center for outfitting with all the systems and subsystems necessary for flight.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

The post NASA Completes Awesome Test Firing of World’s Most Powerful Booster for Human Mission to Mars – Gallery appeared first on Universe Today.